参考文献/References:
[1] Russell J. Report on waves[C]//14th Meeting of the British Association for the Advancement of Science.London,1844:311-390.
[2]Korteweg D D J,deVries D G. On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1895,39(240):422-443.
[3]Benjamin T B,Bona J L,Mahony J J. Model equations for long waves in nonlinear dispersive systems[J]. Philosophical Trans Actions of the Royal Society of London. Series A,Mathematical and Physical Sciences,1972,272(1 220):47-78.
[4]Medeiros L A,Menzala G P. Existence and uniqueness for periodic solutions of the benjamin-bona-mahony equation[J]. SIAM Journal on Mathematical Analysis,1977,8(5):792-799.
[5]Albert J. Dispersion of low-energy waves for the generalized benjamin-bona-mahony equation[J]. Journal of Differential Equations,1986,63(1):117-134.
[6]Albert J. On the decay of solutions of the generalized benjamin-bona-mahony equation[J]. Journal of Mathematical Analysis and Applications,1989,141(2):527-537.
[7]Biler P. Long time behavior of solutions of the generalized Benjamin-Bona-Mahony equation in two space dimensions[D]. Paris:Departement de Mathematiques,Universite de Paris-sud,1991.
[8]Amick C,Bona J,Schonbek M E. Decay of solutions of some nonlinear wave equations[J]. Journal of Differential Equations,1989,81(1):1-49.
[9]Mei M. lq-decay rates of solutions for benjamin-bona-mahony-burgers equations[J]. Journal of Differential Equations,1999,158(2):314-340.
[10]Chen M,Dumont S,Dupaigne L,et al. Decay of solutions to a water wave model with a nonlocal viscous dispersive term[J]. Discrete Cont Dyn Syst-Ser A,2010,27(4):1 473-1 492.
[11]Zhang L. Decay of solutions of generalized benjamin-bona-mahony equations in n-space dimensions[J]. Nonlinear Analysis:Theory,Methods & Applications,1995,25:1 345-1 369.
[12]Fang S,Guo B. The decay rates of solutions of generalized benjamin-bona-mahony equations in multi-dimensions[J]. Nonlinear Analysis:Theory,Methods & Applications,2008,69(7):2 230-2 235.
[13]Dogan A. Numerical solution of rlw equation using linear finite elements withi galerkin’s method[J]. Applied Mathematical Modelling,2002,26(7):771-783.
[14]Saka B,Dag I,Dogan A. Galerkin method for the numerical solution of the rlw equation using quadratic b-splines[J]. International Journal of Computer Mathematics,2004,81(6):727-739.
[15]Dag I,Saka B,Irk D. Galerkin method for the numerical solution of the rlw equation using quintic b-splines[J]. Journal of Computational and Applied Mathematics,2006,190(1):532-547.
[16]Omrani K. The convergence of fully discrete galerkin approximations for the Benjamin-bona-mahony(bbm)equation[J]. Applied Mathematics and Computation,2006,180(2):614-621.
[17]Omrani K,Ayadi M. Finite difference discretization of the benjaminbona-mahony-burgers equation[J]. Numerical Methods for Partial Differential Equations,2008,24(1):239-248.
[18]Chen M. Numerical investigation of a two-dimensional boussinesq system[J]. Discrete Contin Dyn Syst,2009,28(4):1 169-1 190.
[19]Quarteroni A,Valli A. Numerical Approximation of Partial Differential Equations[M]. Berlin:Springer-Verlag,1994.
[20]Khismatullin D,Renardy Y,Renardy M. Development and implementation of vof-prost for 3d viscoelastic liquid simulations[J]. Journal of Non-Newtonian Uid Mechanics,2006,140(1):120-131.
[21]Chen M. Exact traveling-wave solutions to bi-directional wave equations[J]. International Journal of Theoretical Physics,1998,37(5):1 547-1 567.
相似文献/References:
[1]张宏亮,张宝善.规则长波BBM方程的守恒律及性质[J].南京师大学报(自然科学版),2006,29(02):17.
Zhang Hongliang~,Zhang Baoshan~.Conservation Laws and Their Behaviours on the Regularized Long Waves BBM Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2006,29(01):17.
[2]张 俊.粘性BBM型分数阶方程的数值方法[J].南京师大学报(自然科学版),2018,41(04):19.[doi:10.3969/j.issn.1001-4616.2018.04.004]
Zhang Jun.Numerical Methods for Solving BBM Type Viscous Fractional Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):19.[doi:10.3969/j.issn.1001-4616.2018.04.004]