[1]林 琳,李 庚.分数布朗运动驱动的倒向随机微分方程的Lp解(英文)[J].南京师范大学学报(自然科学版),2015,38(04):14.
Lin Lin,Li Geng.Lp Solutions of Backward Stochastic Differential Equations Driven by Fractional Brownian Motions[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(04):14.
点击复制
分数布朗运动驱动的倒向随机微分方程的Lp解(英文)()
《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]
- 卷:
-
第38卷
- 期数:
-
2015年04期
- 页码:
-
14
- 栏目:
-
数学
- 出版日期:
-
2015-12-30
文章信息/Info
- Title:
-
Lp Solutions of Backward Stochastic Differential Equations Driven by Fractional Brownian Motions
- 作者:
-
林 琳1; 李 庚2
-
(1.南京师范大学数学科学学院,江苏 南京 210023)(2.复旦大学数学科学学院,上海 200433
- Author(s):
-
Lin Lin1; Li Geng2
-
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)(2.School of Mathematical Sciences,Fudan University,Shanghai 200433,China
-
- 关键词:
-
倒向随机微分方程; 分数次布朗运动; Lp(p≥2)解; 局部化方法
- Keywords:
-
backward stochastic differential equations; fractional Brownian motions; [Lpp≥2] solutions; localization method
- 分类号:
-
62M05,60H10
- 文献标志码:
-
A
- 摘要:
-
分数次布朗运动驱动的倒向随机微分方程在金融数学、偏微分方程等领域有广泛应用. 本文通过局部化方法以及推广的Ito公式,考虑了在一定条件下,分数布朗运动驱动的倒向随机微分方程中的Lp估计.
- Abstract:
-
Recently,backward stochastic differential equations driven by fractional Brownian motion play an important role in mathematical finance,partial differential equations and other fields. In our paper,by the localization method and the generalized Ito formula,we consider the [Lpp≥2]solutions of backward stochastic differential equations driven by fractional Brownian motions under reasonable assumptions.
参考文献/References:
[1]PARDOUX E,PENG S. Adapted solution of a backward stochastic differential equations[J]. Systems control letters,1990,14:55-61.
[2]ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Math Finance,1997,7:95-105.
[3]CARMONA P,COUTIN L,MONTSENY G. Stochastic integration with respect to fractional Brownian motion[J]. Annales de l’Institut Henri Porncare Probabilities et Statisques,2003,39:27-68.
[4]DUNCAN T E,HU Y,PASIK-DUNCAN B. Stochastic calculus for fractional Brownian motion[J]. SIAM J Control Optim,2000,38:582-612.
[5]MISHURA Y S. Stochastic calculus for fractional Brownian motion and related processes[M]. Berlin Heidelberg:Springer-Verlag,2008.
[6]BIAGINI F,HU Y,IKSENDA B,et al. A stochastic maximal principle for processes driven by fractional Brownian motion[J]. Stoch Process Appl,2002,100:233-253.
[7]HU Y,PENG S. Backward stochastic differential equation driven by fractional Brownian motion[J]. SIAM J Control Optim,2009,48(3):1675-1700.
[8]MATICIUC L,NIE T. Fractional backward stochastic differential equations and fractional backward variational inequalities[J]. J Theoret Probab,2015,28(1):337-395.
[9]BORKOWSKA K J. Generalized bsdes driven by fractional Brownian motion[J]. Statistics and probability letters,2013,83:805-811.
[10]FEI W,XIA D,ZHANG S. Solutions to bsdes driven by both standard and fractional Brownian motions[J]. Acta mathematicae applicatae sinica,2013,29:329-354.
[11]ZHANG H. Properties of solution of fractional backward stochastic differential equation[J]. Applied mathematics and computation,2014,228:446-453.
[12]EL KAROUI N,PENG S,QUENEZ M C. Backward stochastic differential equations in finance[J]. Math Finance,1997,7:1-71.
[13]BRIAND P H,DELYON B,HU Y,et al. Lp solutions of backward stochastic differential equations[J]. Stoch Process Appl,2003,108:109-129.
[14]CHEN S. Lp solutions of one-dimensional backward stochastic differential equations with continuous coefficients[J]. Stoch Anal Appl,2010,28:820-841.
[15]ZHANG Q,ZHAO H. Probabilistic representation of weak solutions of partial differential equations with polynomial growth coefficients[J]. J Theor Probab,2012,25(2):396-423.
[16]HU Y. Integral transformations and anticipative calculus for fractional Brownian motions[J]. Mem Amer Math Soc,2005,175:825.
[17]HU Y,IKSENDAL B. Fractional white noise calculus and applications to finance[J]. Infin Dimens Anal Quantum Probab Relat Top,2003,6:1-32.
[18]MéMIN J,MISHURA Y,VALKEILA E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion[J]. Statist Probab Lett,2001,51:197-206.
备注/Memo
- 备注/Memo:
-
Received data:2015-03-16.
Foundation item:Supported by the NSF of the Jiangsu Higher Education Committee of China(14KJB110016).
Corresponding author:Li Geng,granduate student,majored in backward stochastic differential equation. E-mail:doubleman_li@sina.com
更新日期/Last Update:
2015-12-30