[1]何达伟.[n2±1]的雅可比序列(英文)[J].南京师范大学学报(自然科学版),2015,38(04):61.
 He Dawei.Jacobi Sequences of[n2±1][J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(04):61.
点击复制

[n2±1]的雅可比序列(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年04期
页码:
61
栏目:
数学
出版日期:
2015-12-30

文章信息/Info

Title:
Jacobi Sequences of[n2±1]
作者:
何达伟
南京师范大学数学科学学院,江苏 南京 210023
Author(s):
He Dawei
School of Mathematical Sciences and Institute of Mathematics,Nanjing Normal University,Nanjing 210023,China
关键词:
连分数雅可比符号雅可比序列
Keywords:
continued fractionJacobi symbolJacobi sequence
分类号:
O.156.1
文献标志码:
A
摘要:
令[pk/qk][(k≥0)]表示无理数[θ]的连分数展开式的第[k]个渐近分数. 我们研究雅可比序列[(pk/qk)][(k≥0)]. K. Girstmair证明了当[θ=e]时,此序列是周期长度为24的纯周期序列;当[θ=e2]时,此序列是周期长度为40的纯周期序列. 类似地,本文我们分别确定了[θ=n2+1][(n≥1)] 和[θ=n2-1][(n≥2)] 的雅可比序列的周期长度.
Abstract:
Let[pk/qk][(k≥0)]be the[k]th convergent of the continued fraction expansion of an irrational real number[θ]. We investigate the sequence of Jacobi symbols[(pk/qk)][(k≥0)]. K. Girstmair showed that this sequence is purely periodic with period length 24 for [θ=e] and period length 40 for [θ=e2.] Similarly,in this paper,we determine the period lengths of the Jacobi sequences for [θ=n2+1][(n≥1)] and [θ=n2-1][(n≥2)].

参考文献/References:

[1]GIRSTMAIR K. Continued fractions and Jacobi symbols[J]. Int J Number Theory,2011,7:1 543-1 555.
[2]GIRSTMAIR K. Periodic continued fractions and Jacobi symbols[J]. Int J Number Theory,2012,8:1 519-1 525.
[3]GIRSTMAIR K. Jacobi symbols and Euler’s number e[J]. J Number Theory,2014,135:155-166.
[4]SIERPINSKI W. Elementary theory of numbers[M]. Warszawa:North-Holland PWN-Polish Scientific Publishers,1988.
[5]HUA L K. Introduction to number theory[M]. Berlin:Springer,1982.

备注/Memo

备注/Memo:
收稿日期:2015-04-20. 
基金项目:国家自然科学基金(11371195). 
通讯联系人:何达伟,硕士研究生,研究方向:数论,E-mail:m15212242516_1@163.com
更新日期/Last Update: 2015-12-30