[1]肖叶宇,邓 超.具有随机扰动的吸血虫模型的稳定性[J].南京师范大学学报(自然科学版),2016,39(02):4.[doi:10.3969/j.issn.1001-4616.2016.02.002]
Xiao Yeyu,Deng Chao.Stability of Schistosomiasis Model with Stochastic Perturbations[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(02):4.[doi:10.3969/j.issn.1001-4616.2016.02.002]
点击复制
具有随机扰动的吸血虫模型的稳定性()
《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]
- 卷:
-
第39卷
- 期数:
-
2016年02期
- 页码:
-
4
- 栏目:
-
数学
- 出版日期:
-
2016-06-30
文章信息/Info
- Title:
-
Stability of Schistosomiasis Model with Stochastic Perturbations
- 作者:
-
肖叶宇1; 邓 超2
-
(1.东北大学软件学院,辽宁 沈阳 110169)(2.南京师范大学数学科学学院,江苏 南京 210023)
- Author(s):
-
Xiao Yeyu1; Deng Chao2
-
(1.Software College,Northeastern University,Shenyang 110169,China)(2.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
-
- 关键词:
-
局部渐近稳定性; 随机吸血虫模型; Lyapunov泛函
- Keywords:
-
local asymptotic stability; stochastic schistosomias model; Lyapunov functional
- 分类号:
-
O211.63
- DOI:
-
10.3969/j.issn.1001-4616.2016.02.002
- 文献标志码:
-
A
- 摘要:
-
通过构造Lyapunov泛函得到了文献[18]中提出的一种新的吸血虫模型在随机扰动下无病平衡点的局部稳定性.
- Abstract:
-
In this paper,a new schistosomiasis model proposed in[18],allowing white noise perturbations around the endemic equilibrium is studied. The equibibrium state of the model with random perturbation is locally asymptotically stable by constructing Lyapunov functional.
参考文献/References:
[1] MACDONALD G. The dynamics of heleminth infections,with special reference to schistosomes[J]. Transactions of the royal society of tropical medicine and hygiene,1965,59:489-506.
[2] WOOLHOUSE M E J. On the application of mathmatical models of schistosome transmission dynamics,I. Narural transmissiion[J]. Acta Trop,1991,49:241-270.
[3] CASTILLO C C,FENG Z L,XU D. A schistosomiasis model with mating structure and time delay[J]. Math Biosc,2008(211):333-341.
[4] FENG Z,EPPERT A,MILNER F A,et al. Estimation of parameters governing the transmission dynamics of schistosomes[J]. Appl Math Lett,2004,17:1 105-1 112.
[5] FENG Z,LI C C,MILNER F A. Schistosomiasis models with two migrating human groups[J]. Math and Comput model,2005,41:1 213-1 230.
[6] ALLEN E J,VICTORY JR H D. Modeling and simulation of a schistosomiasis infection with biological control[J]. Acta Trop,2003(87):251-267.
[7] DRIESSCHE P V,WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci,2002,180:29-48.
[8] LIANG S,SETO E Y W,REMAIS J V,et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China[J]. Proc Natl Acad Sci USA,2007,104:7 110-7 115.
[9] RILEY S,CARABIN H,BELISLE P,et al. Multi-host transimission dynamics of schistosoma japonicum in Samar Province,the Philippines[J]. Plos Med,2008,5(1):70-78.
[10] ABBAS S,BAHUGGUNA D,BANERJEE M. Effect of stochasric perturbation on a two species competitive model[J]. Nonlinear analysis:hybrid systems,2009(3):195-206.
[11] DAS P,MUKHERJEE D,SARKAR A K. Analysis of a disease transmission model of Hepatitis C[J]. J Biol Syst,2005(13):331-339.
[12] LIU Q. Stability of SIRS system with random perturbations[J]. Physica A,2009,388:3 677-3 686.
[13] MARGHERITA C. Mean-square stability of a stochastic model for bacteriophage infection with time delays[J]. Math Bios,2007,210:395-414.
[14] MUKHERJEE D. Stability analysis of a stochastic model for prey-predator system with disease in the prey[J]. Nonlinear analysis:modelling and control,2003,8:83-92.
[15] SARKAR R R,BANERJEE S. Cancer self remission and tumor stability-astochastic approch[J]. Math Biol,2005,196:65-81.
[16] YU J J,JIANG D Q,SHI N Z. Global stability of two-group SIR model with random perturbation[J]. J Math Anal Appl,2009,360:235-244.
[17] DENG C,GAO H. Stability of SVIR system with random perturbations[J]. Inter J Biomath,2012,5(4):1 250 025,15.
[18] QI L,CUI J,GAO Y,et al. Modeling the schistosomiasis on the Islets in Nanjing[J]. Inter J Biomath,2012,5(4):1 250 037.
[19] DIEKMANN O,HEESTERBEEK J A P,METZ J A J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. J Math Biol,1990,28:365-382.
[20] HAS’MINSKIJ R Z. Stochastic Stability of Differential Equations[M]. The Netherlands:Sijthoof Noordhoof,Alphen aan den Rijn,1980.
[21] MAY R M. Stability and complexity in model ecosystems[M]. Princeton:Princeton University Press,2001.
备注/Memo
- 备注/Memo:
-
收稿日期:2015-12-20.
基金项目:江苏省优势学科、江苏省气候变化协同创新中心和江苏省教育厅自然科学基金(11KJA110001).
通讯联系人:肖叶宇,讲师,研究方向:数学建模. E-mail:641339691@qq.com
更新日期/Last Update:
2016-06-30