[1]龙 艳.广义Petersen图的控制数(n=3k)(英文)[J].南京师范大学学报(自然科学版),2016,39(02):10.[doi:10.3969/j.issn.1001-4616.2016.02.003]
Long Yan.The Exact Domination Number of GeneralizedPetersen Graphs P(n,k)with n=3k[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(02):10.[doi:10.3969/j.issn.1001-4616.2016.02.003]
点击复制
广义Petersen图的控制数(n=3k)(英文)()
《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]
- 卷:
-
第39卷
- 期数:
-
2016年02期
- 页码:
-
10
- 栏目:
-
数学
- 出版日期:
-
2016-06-30
文章信息/Info
- Title:
-
The Exact Domination Number of GeneralizedPetersen Graphs P(n,k)with n=3k
- 作者:
-
龙 艳
-
新疆应用职业技术学院师范教育系,新疆 奎屯 833200
- Author(s):
-
Long Yan
-
Teacher Education Department,Xinjiang Applied Vocational Technical College,Kuitun 833200,China
-
- 关键词:
-
控制集; 控制数; 广义Petersen图
- Keywords:
-
dominating set; domination number; generalized Petersen graph
- 分类号:
-
O157.5
- DOI:
-
10.3969/j.issn.1001-4616.2016.02.003
- 文献标志码:
-
A
- 摘要:
-
如果V\S中的每一个点都与S中的至少一个点相邻,我们称V的子集S是G=(V,E)的一个控制集. G的控制数是G的最小控制集的基数. 许多类型图的控制数及其算法已经被研究,通常这些图都有某种树型结构. 本文将确定广义Petersen图当n=3k时的控制数,且其控制数为[5n9].
- Abstract:
-
A subset [S?V] is a dominating set of [G=(V,E)] if each vertex in [V\S] is adjacent to at least one vertex in [S]. The domination number of [G] is the cardinality of a minimum dominating set of [G]. Graph domination numbers and algorithms for finding them have been investigated for numerous classes of graphs,usually for graphs that have some kind of tree-like structure. In this paper,we determine that the exact domination number of generalized Petersen graphs [P(n,k)] with [n=3k],[γ(P(n,k))=5n9].
参考文献/References:
[1] HAYNES T W,HEDETNIEMI S T,SLATER P J. Fundamentals of domination in graphs[M]//Monographs and textbooks in pure and applied mathematics,208. New York:Marcel Dekker Inc,1998.
[2] HAYNES T W,HEDETNIEMI S T,SLATER P J. Domination in graphs,advanced topics[M]//Monographs and textbooks in pure and applied mathematics,209. New York:Marcel Dekker Inc,1998.
[3] BEHZAD A,BEHZAD M,PRAEGER C E. On the domination number of the generalized Petersen graphs[J]. Discrete mathematics,2008,308:603-610.
[4] EBRAHIMI B J,JAHANBAKHT N,MAHMOODIANC E S. Vertex domination of generalized Petersen graphs[J]. Discrete mathematics,2009,309:4 355-4 361.
[5] FU X,YANG Y,JIANG B. On the domination number of generalized Petersen graphs P(n,3)[J]. Ars Combin,2007,84:373-383.
[6] FU X,YANG Y,JIANG B. On the domination number of generalized Petersen graphs P(n,2)[J]. Discrete mathematics,2009,309:2 445-2 451.
[7] YAN H,KANG L,XU G. The exact domination number of the generalized Petersen grapes[J]. Discrete mathematics,2009,309:2 596-2 607.
[8] ZELINKA B. Domination in generalized Petersen graphs[J]. Czechoslovak math J,2002,52(127):11-16.
备注/Memo
- 备注/Memo:
-
Received data:2015-08-19. Foundation item:The National Natural Science Foundation of China(11301450). Corresponding author:Long Yan,lecturer,majored in graph theorem. E-mail:1021676908@qq.com
更新日期/Last Update:
2016-06-30