[1]魏 敏,严珍珍,石 磊.完备度量空间中的图定向自相似集合[J].南京师范大学学报(自然科学版),2016,39(02):16.[doi:10.3969/j.issn.1001-4616.2016.02.004]
Wei Min,Yan Zhenzhen,Shi Lei.Graph-Directed Self-Similar Set in Complete Metric Spaces[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(02):16.[doi:10.3969/j.issn.1001-4616.2016.02.004]
点击复制
完备度量空间中的图定向自相似集合()
《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]
- 卷:
-
第39卷
- 期数:
-
2016年02期
- 页码:
-
16
- 栏目:
-
数学
- 出版日期:
-
2016-06-30
文章信息/Info
- Title:
-
Graph-Directed Self-Similar Set in Complete Metric Spaces
- 作者:
-
魏 敏1; 严珍珍2; 石 磊1
-
1.南京农业大学理学院,江苏 南京 210095)(2.南京邮电大学理学院,江苏 南京 210046
- Author(s):
-
Wei Min1; Yan Zhenzhen2; Shi Lei1
-
(1.College of Sciences,Nanjing Agricultural University,Nanjing 210095,China)(2.College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210046,China)
-
- 关键词:
-
图定向自相似集合; 开集条件(OSC); 强开集条件(SOSC)
- Keywords:
-
graph-directed self-similar sets; open set condition(OSC); strong open set condition(SOSC)
- 分类号:
-
O19
- DOI:
-
10.3969/j.issn.1001-4616.2016.02.004
- 文献标志码:
-
A
- 摘要:
-
文中发展了完备度量空间中的图定向自相似集合的Hausdorff维数和测度,这些理论和欧几里德空间中的有很大的不同,即满足开集条件不能意味着在完备度量空间中的图定向自相似集K的[α]维Hausdorff测度大于零,这里的[α]为K的Hausdorff维数.本文讨论了完备度量空间中图定向自相似集合一些性质之间的关系.
- Abstract:
-
In this topic,we develop the Hausdorff dimension,Hausdorff measure of graph-directed self-similar sets in complete metric spaces. These are different from Rd,that is to say,the sets satisfy OSC in Rd,but we cannot have the conclusion that the [α]dimensional Hausdorff measure of graph-directed self-similar set K is positive in complete metric spaces,where the [α]is the Hausdorff dimension of K. We find the relationship between strong open set condition,Hausdorff dimension,the positivity of the Hausdorff measure and [β]space of graph-directed self-similar sets in complete metric spaces.
参考文献/References:
[1] SCHIEF A. Separation properties for self-similarsets[J]. Proceeding of the American mathematical society,1994,122:111-115.
[2] SCHIEF A. Self-similar sets in complete metric spaces[J]. Proceeding of the American mathematical society,1996,124:481-490.
[3] MAULDIN R D,WILLIAMS S C. Hausdorff dimension in graph directed constructions[J]. Transactions of the American Math Soc,1988,309:811-829.
[4] EDGAR G A. Measure,topology,and fractal geometry[M]. New York:Springer Verlag,1990.
[5] WANG J L. The open set condition for graph directed self-sim-ilar sets[J]. Random Compu Dynam,1997,5:283-305.
[6] LARMAN D G.A new theory of dimension[J]. Proc London Math Soc,1967,17(3):178-192.
[7] EDGAR G A,GOLDS J. A fractal dimension estimate for a graph-directed iterated function system of non-similarities[J]. Indiana Univ Math J,1999,48(2):429-447.
备注/Memo
- 备注/Memo:
-
收稿日期:2015-11-18.
基金项目:中央高校基本科研业务费专项资金(KYZ201538)、江苏省基础研究计划(自然科学基金)(BK20150651)、南京农业大学青年科技创新基金(Y0201300259)、南京农业大学理学院青年科技创新基金(LXYQ201201104).
通讯联系人:魏敏,讲师,研究方向:拓扑动力系统. E-mail:weimin2005@njau.edu.cn
更新日期/Last Update:
2016-06-30