[1]杨广丽,岳瑞英,赵 健,等.吸附在TiO2(110)表面的Aun-1Ag(n=1-5)团簇的第一性原理研究[J].南京师范大学学报(自然科学版),2016,39(02):38.[doi:10.3969/j.issn.1001-4616.2016.02.008]
 Yang Guangli,Yue Ruiying,Zhao Jian,et al.A First Principles Study on Aun-1Ag(n=1-5)ClustersAdsorbed on TiO2(110)Surface[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(02):38.[doi:10.3969/j.issn.1001-4616.2016.02.008]
点击复制

吸附在TiO2(110)表面的Aun-1Ag(n=1-5)团簇的第一性原理研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年02期
页码:
38
栏目:
化学
出版日期:
2016-06-30

文章信息/Info

Title:
A First Principles Study on Aun-1Ag(n=1-5)ClustersAdsorbed on TiO2(110)Surface
作者:
杨广丽岳瑞英赵 健朱小蕾
南京工业大学化学化工学院,材料化学工程国家重点实验室,江苏 南京 210009
Author(s):
Yang GuangliYue RuiyingZhao JianZhu Xiaolei
State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering,Nanjing University of Technology,Nanjing 210009,China
关键词:
双金属团簇TiO2表面吸附密度泛函理论态密度
Keywords:
bimetallic clustersTiO2 surfaceadsorptionDFTDOS
分类号:
O641.1
DOI:
10.3969/j.issn.1001-4616.2016.02.008
文献标志码:
A
摘要:
采用第一性原理对Aun-1Ag(n=1-5)团簇所有异构体吸附在TiO2(110)表面的负载构型进行了结构优化,并分析了负载团簇的最稳定结构的电子性质. 研究结果表明:在较稳定的吸附构型中,团簇都与TiO2表面的两配位的氧(O2c)相连接. 将不稳定的Au3Ag异构体负载在TiO2表面后稳定性明显提高. 能量分析表明,负载的Au3Ag为最稳定体系. 根据bader电荷和DOS分析,吸附Aun-1Ag(n=1-5)团簇后,有电子从金属团簇转移到吸附基底上. Aun-1Ag(n=4,5)团簇吸附后的TiO2(110)表面不再具有半导体性质. AuAg和Au2Ag团簇与TiO2 表面的作用较弱,它们与TiO2表面之间的电荷转移较少.
Abstract:
All possible isomers of Aun-1Ag(n=1-5)supported on TiO2 surface are optimized and electronic properties of the supported most-stable metal clusters are analyzed based on the first-principles density functional theory. The results show that in the most stable configurations,the metal clusters combine with the two-coordinated oxygen(O2c)of the TiO2 surface. The stability of unstable Au3Ag isomer is significantly improved by supporting it on the TiO2 surface. Energy analyses demonstrate that the supported Au3Ag is most stable cluster among the supported Aun-1Ag(n=1-5)clusters. The analyses of charge and density of state(DOS)reveal that there is obvious charge transfer from metal cluster to substrate after the cluster adsorption on the surface of TiO2. The TiO2(110)surfaces don’t have the semiconducting character for TiO2-Aun-1Ag(n=4,5)systems. There are weaker interactions and few charge transfer between AuAg/Au2Ag and the TiO2 surface.

参考文献/References:

[1] HOFFMANN M R,MARTIN S T,CHOI W,et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69-96.
[2] FOX M A,DULAY M T. Heterogeneous photocatalysis[J]. Chem Rev,1995,93(1):341-357
[3] LINSEBIGLER A L,LU G,YATES J T. Photocatalysis on TiO2 surfaces:principles,mechanisms,and selected results[J]. Chem Rev,1995,95(3):735-758.
[4] HUUSKO J,LANTTO V,TORVELA H. TiO2 thick-film gas sensors and their suitability for NOx monitoring[J]. Sensor Actuat B-Chem,1993,16(1):245-248.
[5] GATES B C. Supported metal clusters:synthesis,structure,and catalysis[J]. Chem Rev,1995,95(3):511-522.
[6] HARUTA M. Size- and support-dependency in the catalysis of gold[J]. Catal Today,1997,36(1):153-166.
[7] BOCCUZZI F,CHIORINO A. FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers[J]. J Phys Chem B,2000,104(23):5 414-5 416.
[8] WANG Y J,WANG C Y,WANG S Y. CO adsorption on small Aun(n=1-7)clusters supported on a reduced rutile TiO2(110)surface:a first-principles study[J]. Chin Phys B,2011,20(3):036801.
[9] YANG Z X,WU R Q. Structural and electronic properties of Au on TiO2(110)[J]. Phys Rev B,2000,61(20):14 066-14 071.
[10] MAZHEIKA A S,BREDOW T,MATULIS V E. Theoretical study of adsorption of Ag clusters on the anatase TiO2(100)surface[J]. J Phys Chem C,2011,115(35):17 368-17 377.
[11] MAZHEIKA A S,MATULIS V E,IVASHKEVICH O A. Quantum chemical study of adsorption of Ag2,Ag4 and Ag8 on stoichiometric TiO2(110)surface[J]. J Mol Struc-Theochem,2010,942:47-54.
[12] YANG C T,BALAKRISHNAN N,BHETHANABOTLA V R. Interplay between subnanometer Ag and Pt clusters and anatase TiO2(101)surface:implications for catalysis and photocatalysis[J]. J Phys Chem C,2014,118(90):4 702-4 714.
[13] LIU H,KOZLOV A I,KOZLOVA A P,et al. Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3)and As-precipitated titanium hydroxide[J]. J Catal,1999,185(2):252-264.
[14] IIZUKA1 Y,KAWAMOTO1 A,AKITA K,et al. Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation[J].Catal Lett,2004,97(3):203-208.
[15] LIU J H,WANG A Q,CHI Y S,et al. Synergistic effect in an Au-Ag alloy nanocatalyst:CO oxidation[J]. J Phys Chem B,2005,109(1):40-43.
[16] KOHN W,SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev,1965,140(4):1?133-1 138.
[17] PERDEW J P,BURKE K,ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3 865-3 868.
[18] GIANNOZZI P,BARONI S,BONINI N,et al. QUANTUM ESPRESSO:a modular and open-source software project for quantum simulations of materials[J]. Journal of physics:condensed matter,2009,21(39):395 502.
[19] LEE H M,GE M,SAHU B R. Geometrical and electronic structures of gold,silver,and gold-silver binary clusters:origins of ductility of gold and gold-silver alloy formation[J]. J Phys Chem B,2003,107(37):9 994-10 005.
[20] BISHEA G A,MORSE M D. Spectroscopic studies of jetcooled AgAu and Au2[J]. J Chem Phys,1991,95(8):5 645-5 659.

备注/Memo

备注/Memo:
收稿日期:2014-12-03. 
基金项目:国家自然科学基金项目(21276122、21136001、91434109). 
通讯联系人:朱小蕾,教授,博士生导师,研究方向:分子模拟. E-mail:xlzhu@njtech.edu.cn
更新日期/Last Update: 2016-06-30