[1]叶志勇,季慧慧,张 贺,等.带有噪声和时滞的二阶多智能体的一致性[J].南京师范大学学报(自然科学版),2017,40(02):7.[doi:10.3969/j.issn.1001-4616.2017.02.002]
 Ye Zhiyong,Ji Huihui,Zhang He,et al.Consensus of Second-Order Multi-Agent Systems with Noises and Time Delays[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(02):7.[doi:10.3969/j.issn.1001-4616.2017.02.002]
点击复制

带有噪声和时滞的二阶多智能体的一致性()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年02期
页码:
7
栏目:
·数学·
出版日期:
2017-06-29

文章信息/Info

Title:
Consensus of Second-Order Multi-Agent Systems with Noises and Time Delays
文章编号:
1001-4616(2017)02-0007-05
作者:
叶志勇1季慧慧1张 贺2张 华13
(1.重庆理工大学数学与统计学院,重庆 400054)(2.百色学院数学与统计学院,广西 百色 533000)(3.铜仁学院大数据学院,贵州 铜仁 554300)
Author(s):
Ye Zhiyong1Ji Huihui1Zhang He2Zhang Hua13
(1.Mathematics and Statistics Institute,Chongqing University of Technology,Chongqing 400054,China)(2.Mathematics and Statistics Institute,Baise University,Baise 533000,China)(3.Big Data Institute,Tongren University,Tongren 554300,China)
关键词:
多智能体系统几乎必然指数一致时滞随机扰动
Keywords:
multi-agent systemsalmost sure exponential consensustime delaysstochastic disturbance
分类号:
O29
DOI:
10.3969/j.issn.1001-4616.2017.02.002
文献标志码:
A
摘要:
研究了随机二阶时滞多智能体系统的几乎必然指数一致性问题.同时考虑了由Browian运动所导致的随机扰动和系统节点时间延迟两种情况. 首先,建立随机二阶时滞多智能体系统的误差动力系统. 其次,通过建立适当的Lyapunov泛函,并结合随机分析理论、控制技术以及线性矩阵不等式,从而得到了确保系统达到几乎必然指数一致性的充分性条件. 最后,数值仿真的例子证实了所得结论的有效性.
Abstract:
Almost sure exponential consensus of stochastic second-order multi-agent systems with time delays is studied. The multi-agent systems consider both the stochastic disturbance governed by Bronwian motion and the time delays. First of all,the error dynamic system of second-order multi-agent systems is established. Then by constructing suitable Lyapunov functional and combining with stochastic analysis theory,control technique as well as linear matrix inequality technique,as a result,the sufficient conditions for guaranteeing almost sure exponential consensus of the systems are derived. Last but not to the least,simulation examples are presented to demonstrate the effectiveness of the obtained results.

参考文献/References:

[1] WANG Y,YAN W,LI J. Passivity-based formation control of autonomous underwater vehicles[J]. IET control theory and applications,2012,6(4):518-525.
[2]CORTéS J,BULLO F. Coordination and geometric optimization via distributed dynamical systems[J]. SIAM journal on control and optimization,2005,44(5):1 543-1 574.
[3]MARTIN S,GIRARD A,FAZELI A,et al. Multi-agent flocking under general communication rule[J]. IEEE transactions on control of network systems,2014,1(2):155-156.
[4]MUNZ U,PAPACHRISTODOULOU A,ALLGOWER F. Delay robustness in non-identical multi-agent systems[J]. IEEE transactions on automatic control,2012,57(6):1 597-1 603.
[5]CAI N,CAO J W,MA H Y,et al. Swarm stability analysis of nonlinear dynamical multi-agent systems via relative Lyapunov function[J]. Arabian journal for science and engineering,2014,39(3):2 427-2 434.
[6]WAN Y,CAO J. Distributed robust stabilization of linear multi-agent systems with intermittent control[J]. Journal of the franklin institute,2015,352(10):4 515-4 527.
[7]WANG Y,CAO J,HU J. Pinning consensus for multi-agent systems with non-linear dynamics and time-varying delay under directed switching topology[J]. IET control theory and applications,2014,8(17):1 931-1 939.
[8]HU A,CAO J,HU M,et al. Event-triggered consensus of Markovian jumping multi-agent systems via stochastic sampling[J]. IET control theory and applications,2015,9(13):1 964-1 972.
[9]YU W,CHEN G,CAO M,et al. Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics[J]. IEEE transactions on systems,man,and cybernetics,part B:cybernetics,2010,40(3):881-891.
[10]YU W,CHEN G,CAO M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[J]. Automatica,2010,46(6):1 089-1 095.
[11]SONG Q,CAO J,YU W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems and control letters,2010,59(9):553-562.
[12]YU W,ZHENG W X,CHEN G,et al. Second-order consensus in multi-agent dynamical systems with sampled position data[J]. Automatica,2011,47(7):1 496-1 503.
[13]LI T,ZHANG J F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises[J]. IEEE transactions on automatic control,2010,55(9):2 043-2 057.
[14]LIU S,XIE L,ZHANG H. Distributed consensus for multi-agent systems with delays and noises in transmission channels[J]. Automatica,2011,47(5):920-934.
[15]MA C,LI T,ZHANG J. Consensus control for leader-following multi-agent systems with measurement noises[J]. Journal of systems science and complexity,2010,23(1):35-49.
[16]HU A,CAO J,HU M,et al. Event-triggered consensus of multi-agent systems with noises[J]. Journal of the franklin institute,2015,352(9):3 489-3 503.
[17]YE Z,ZHANG H,ZHANG H,et al. Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters[J]. Chaos,solitons and fractals,2015,73:156-165.
[18]ZHAO H,DING N. Dynamic analysis of stochastic bidirectional associative memory neural networks with delays[J]. Chaos,solitons and fractals,2007,32(5):1 692-1 702.

备注/Memo

备注/Memo:
收稿日期:2016-10-16.
基金项目:国家自然科学基金(11401062、61374104、61364003、KJ1500915).
通讯联系人:叶志勇,博士,教授,研究方向:随机多智能体,随机复杂网络,传染病模型等. E-mail:yezy@cqut.edu.cn
更新日期/Last Update: 2017-06-30