[1]郑浩泉,何浩奇,刘伽椰,等.时空轨迹数据存储方法研究[J].南京师范大学学报(自然科学版),2017,40(03):38.[doi:10.3969/j.issn.1001-4616.2017.03.006]
 Zheng Haoquan,He Haoqi,Liu Jiaye,et al.Research on Storage Methods of Spatio-Temporal Trajectories[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):38.[doi:10.3969/j.issn.1001-4616.2017.03.006]
点击复制

时空轨迹数据存储方法研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年03期
页码:
38
栏目:
·计算机科学·
出版日期:
2017-09-30

文章信息/Info

Title:
Research on Storage Methods of Spatio-Temporal Trajectories
文章编号:
1001-4616(2017)03-0038-07
作者:
郑浩泉1何浩奇2刘伽椰2赵 斌2*吉根林2俞肇元3
(1.国网电力科学研究院,江苏 南京 211100)(2.南京师范大学 计算机科学与技术学院,江苏南京 210023)(3.南京师范大学 地理科学学院,江苏 南京 210023)
Author(s):
Zheng Haoquan1He Haoqi2Liu Jiaye2Zhao Bin2*Ji Genlin2Yu Zhaoyuan3
(1.State Grid Electric Power Research Institute,Nanjing 211100,China)(2.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China)(3.School of Geography Science,Nanjing Normal University,Nanjing 210023,China)
关键词:
轨迹磁盘存储列存储轨迹数据挖掘
Keywords:
trajectorydisk storagecolumn storetrajectory data mining
分类号:
TP392
DOI:
10.3969/j.issn.1001-4616.2017.03.006
文献标志码:
A
摘要:
时空轨迹数据的存储方法是轨迹数据管理中的重要课题,直接影响轨迹数据挖掘算法的性能. 本文根据轨迹数据访问方式的不同提出了3种轨迹数据的存储方法,分别是原序保持的轨迹存储方法、空间属性优先的轨迹存储方法和时间属性优先的轨迹存储方法. 存储的原则是每次数据访问所涉及的数据应该尽可能被连续存储. 将上述3种轨迹数据存储方法加以实现,基于真实数据集的实验表明,按照数据访问的特点为轨迹数据挖掘算法选择合适的轨迹存储方法,可以有效地提高挖掘算法的执行效率,更好地支撑轨迹数据分析挖掘任务.
Abstract:
Spatiotemporal trajectory data storage is an important research issue in trajectory data management,which directly affects the performances of trajectory data mining algorithms. In this paper,we propose three trajectory storage methods according to data access methods,including the trajectory storage based on chronological orders,the trajectory storage based on spatial attributes and the trajectory storage based on temporal attributes. The basic principle of trajectory storage is that the data involved in one operation should be stored as close as possible. The three trajectory storage methods are implemented,and the experimental results based on a real data set show that,employing appropriate trajectory storage methods according to the characteristics of data access may significantly improve the efficiency of trajectory data mining algorithms and help to better support trajectory data analysis and mining tasks.

参考文献/References:

[1] MEDIANO M R,CASANOVA M A,DREUX M. V-Trees a storage method for long vector data[C]//Proceedings of 20th International Conference on Very Large Data Bases. Santiago de Chile,Chile:Morgan Kaufmann,1994:321-330.
[2]CHAKKA V P,EVERSPAUGH A,PATEL J M. Indexing large trajectory data sets with SETI[C]//First Biennial Conference on Innovative Data Systems Research. Asilomar,CA,USA:www.cidrdb.org,2003.
[3]BOTEA V,MALLETT D,NASCIMENTO M A,et al. PIST:an efficient and practical indexing technique for historical spatio-temporal point data[J]. GeoInformatica,2008,12(2):143-168.
[4]MAUROUX P C,WU E,MADDEN S. TrajStore:an adaptive storage system for very large trajectory data sets[C]//Proceedings of the 26th International Conference on Data Engineering. Long Beach,California,USA:IEEE Computer Society,2010:109-120.
[5]Wang H Z,Zheng K,Xu J J,et al. SharkDB:an In-memory column-oriented trajectory storage[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. Melbourne,Victoria,Australia:ACM,2015:1 099-1 104.
[6]ZHENG Y. Trajectory data mining:an overview[J]. ACM transactions on intelligent systems and technology,2015,6(3):29:1-29:41.
[7]吉根林,赵斌. 时空轨迹大数据模式挖掘研究进展[J]. 数据采集与处理,2015,30(1):47-58.
[8]吉根林,赵斌. 面向大数据的时空数据挖掘综述[J]. 南京师大学报(自然科学版),2014,37(1):1-7.
[9]吉根林,孙鸿艳,赵斌. 时空轨迹群体运动模式挖掘研究进展[J]. 南京航空航天大学学报,2016,48(5):615-624.
[10]LEE J G,HAN J W,WHANG KY. Trajectory clustering:a partition-and-group framework[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. Beijing,China:ACM,2007:593-604.
[11]ZHENG Y,CHEN Y,LI Q,et al. Understanding transportation modes based on GPS data for web applications[J]. Acm transactions on the Web,2010,4(1):495-507.
[12]PATEL D. Incorporating duration and region association information in trajectory classification[J]. Journal of location based services,2013,7(4):246-271.
[13]JEUNG H,YIU M L,ZHOU X F,et al. Discovery of convoys in trajectory databases[J]. Proceedings of the VLDB endowment,2008,1(1):1 068-1 080.
[14]ZHENG K,ZHENG Y,YUAN N J,et al. On discovery of gathering patterns from trajectories[C]//29th IEEE International Conference on Data Engineering. Brisbane,Australia:IEEE Computer Society,2013,242-253.
[15]GIANNOTTI F,NANNI M,PINELLI F,et al. Trajectory pattern mining[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Jose,California,USA:ACM,2007:330-339.
[16]CAO H P,MAMOULIS N,CHEUNG D W. Discovery of periodic patterns in spatiotemporal sequences[J]. IEEE transactions on knowledge and data engineering,2007,19(4):453-467.
[17]ESTER M,KRIEGEL H P,SANDER J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining(KDD-96). Portland,Oregon,USA:AAAI Press,1996:226-231.
[18]LEE J G,HAN J W,LI X L. Trajectory outlier detection:a partition-and-detect framework[C]//Proceedings of the 24th International Conference on Data Engineering. Cancun,Mexico,2008:140-149.

备注/Memo

备注/Memo:
收稿日期:2017-03-16.
基金项目:智能电网生产调度领域大数据应用研究(524606160204)资助、国家自然科学基金(41471371)资助.
通讯联系人:赵斌,博士,副教授,研究方向:数据挖掘、数据库及其应用. E-mail:zhaobin@outlook.com
更新日期/Last Update: 2017-09-30