[1]杨双波.一维磁性原子链系统中的Majorana费米子态(英文)[J].南京师范大学学报(自然科学版),2017,40(03):110.[doi:10.3969/j.issn.1001-4616.2017.03.016]
 Yang Shuangbo.Majorana Fermion in a System of OneDimensional Magnetic Atomic Chain[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):110.[doi:10.3969/j.issn.1001-4616.2017.03.016]
点击复制

一维磁性原子链系统中的Majorana费米子态(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年03期
页码:
110
栏目:
·物理学·
出版日期:
2017-09-30

文章信息/Info

Title:
Majorana Fermion in a System of OneDimensional Magnetic Atomic Chain
文章编号:
1001-4616(2017)03-0110-08
作者:
杨双波
南京师范大学物理科学与技术学院,江苏省大规模复杂系统数值模拟重点实验室,江苏 南京 210023
Author(s):
Yang Shuangbo
Jiangsu Key Laboratory for NSLSCS,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
Majorana费米子磁性原子链BdG方程局域态密度
Keywords:
Majorana fermionmagnetic atomic chainBdG equationlocalized density of states
分类号:
O413.1
DOI:
10.3969/j.issn.1001-4616.2017.03.016
文献标志码:
A
摘要:
对处于螺旋形磁场及横向均匀磁场的一维磁性原子链模型,在平均场近似下通过自洽地求解Bogoliubov-de-Genes方程我们计算了系统的能谱. 我们发现在一定参数值的范围内能谱随螺旋形磁场振幅值演化呈现能量为零的Majorana费米子态. 我们计算了局域态密度发现对Majorana费米子其态密度的峰值出现在链的两端(或中点)位置. 我们计算了波函数其空间分布,发现它与局域态密度的结果一致.
Abstract:
For a model of one dimensional magnetic atomic chain in both a helical magnetic field and a transverse uniform magnetic field,we calculate its energy spectrum by solving Bogoliubov-de-Genes equation selfconsistently in the mean field approximation. We find that for a certain parameter setting,energy spectrum evolving with amplitude of helical magnetic field,appears Majorana fermion eigenstates. We calculate local density of states,and find that the local density of states for Majorana fermion shows peaks at the both ends(or at middle)of the magnetic atomic chain. We calculate wave function,and its spatial distribution agrees with local density of states.

参考文献/References:

[1] MAJORANA E. Symmetric theory of electron and positrons[J]. Nuovo Cimento,1937,14(1):171-181.
[2]WILCZEK F. Majorana returns[J]. Nat Phys,2009,5(9):614-618.
[3]NAYAK C,SIMON S H,STERN A,et al. Non-Abelian anyons and topological quantum computation[J]. Rev Mod Phys,2008,80(3):1 083-1 159.
[4]ALICEA J. New directions in the persuit of Majorana fermions in solid state system[J]. Rep Prog Phys,2012,75(7):076501-1-36.
[5]NADJ-PERGE S,DROZDOV I K,BERNEVIG B A,et al. Proposal for realizing Majorana fermions in chain of magnetic atoms on a superconductor [J]. Phys Rev B,2013,88(2):020407-1-5(R).
[6]P?YH?NEN K,WESTSTR?M A,R?NTYNEN J,et al. Majorana state in helical shiba chain and ladders[J]. Phys Rev B,2014,89(11):115109-1-7.
[7]VAZIFEH M M,FRANZ M. Self-organized topological state with Majorana fermions[J]. Phys Rev Lett,2013,111(20):206802-1-5.
[8]SACRAMENTO P D,DUGAEV V K,VIEIRA V R. Magnetic impurities in a superconductors:effect of domainwall and interference[J]. Phys Rev B,2007,76(1):014512-1-21.
[9]EBISU H,YADA K,KASAI H,et al. Odd frequency pairing in topological superconductivity in a one dimensional magnetic chain[J]. Phys Rev B,2015,91(5):054518-1-15.

备注/Memo

备注/Memo:
Received data:2016-11-17. Corresponding author:Yang Shuangbo,professor,majored in nonlinear physics and low dimensional system. E-mail:yangshuangbo@njnu.edu.cn
更新日期/Last Update: 2017-09-30