[1]李 婷,杨永富.非等熵Euler-Maxwell方程组大稳态解的稳定性[J].南京师范大学学报(自然科学版),2017,40(04):26.[doi:10.3969/j.issn.1001-4616.2017.04.006]
 Li Ting,Yang Yongfu.Stability of Large Steady-State Solutions toNon-Isentropic Euler-Maxwell Systems[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(04):26.[doi:10.3969/j.issn.1001-4616.2017.04.006]
点击复制

非等熵Euler-Maxwell方程组大稳态解的稳定性()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年04期
页码:
26
栏目:
·数学与计算机科学·
出版日期:
2017-12-30

文章信息/Info

Title:
Stability of Large Steady-State Solutions toNon-Isentropic Euler-Maxwell Systems
文章编号:
1001-4616(2017)04-0026-10
作者:
李 婷杨永富
河海大学理学院,江苏 南京 211100
Author(s):
Li TingYang Yongfu
College of Science,Hohai University,Nanjing 211100,China
关键词:
非等熵Euler-Maxwell方程组整体光滑解 稳定性能量估计
Keywords:
non-isentropic Euler-Maxwell system global smooth solutions stability energy estimates
分类号:
O175.28
DOI:
10.3969/j.issn.1001-4616.2017.04.006
文献标志码:
A
摘要:
研究无温度衰减的非等熵Euler-Maxwell方程组在非常数大稳态解附近周期光滑解的稳定性. 通过引入新的变量及一个非对角的对称化子,并借助反对称矩阵的性质和归纳法,给出了稳定性结果的简洁证明.
Abstract:
Stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Maxwell system without temperature damping term are studied. New variables are introduced and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. The proof is based on an induction argument on the order of the derivatives of solutions in energy and time dissipation estimates. This allows to make the proof of the stability result very simple and concise.

参考文献/References:

[1] BESSE C,DEGOND P,DELUZET F,et al. A model of ionospheric plasma modeling[J]. Math models methods Appl Sci,2004,14:393-415.
[2]DEGOND P,MARKOWICH P. A steady state potential flow model for semiconductors[J]. Ann Mat Pura Appl,1993,52:87-98.
[3]FENG Y,WANG S,LI X. Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term[J]. J Math Meth Appl Sci,2016(39):2 514-2 528.[4]YONG W A. Entropy and global existence for hyperbolic balance laws[J]. Arch Ration Mech Anal,2004,172:247-266.[5]LI T T,YU W C. Boundary value problems for quasilinear hyperbolic systems[M]//Duke Univ,Math. Ser.,vol. V. Durham:Duke University,1985.[6]KATO T. The Cauchy problem for quasi-linear symmetric hyperbolic systems[J]. Arch Ration Mech Anal,1975,58:181-205.[7]GUO Y,STRAUSS W. Stability of Semiconductor states with insulating and contact boundary conditions[J]. Arch rational Mech Anal,2005,170:1-30.[8]LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[J]. CBMS-NSF Reg Conf Ser Appl Math,SIAM,Philadelphia,1973.[9]JUNGEI A. Quasi-hydrodynamie Semiconductor Equations,Progress in Nonlinear Differential Equations and Their Applica-tions[M]. Berlin:Birkhanser 2001.[10]LUO T,NATALINI R,XIN Z,Large time behavior of the solutions to a hydrodynamic model for semiconductors[J]. SIAM J Appl Math,1999,59:810-830.[11]CHEN F. Introduction to Plasma Physics and Controlled Fusion[M]. New York:Plenum Press,1984.[12]FRIEDRICHS K O. Symmetric hyperbolic linear differential equations[J]. Commun Pure Appl Math,1954,7:345-392.[13]FENG Y H,WANG S,KAWASHIMA S C. Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system[J]. Appl Math,2012,24(14):2 851-2 884.[14]WANG Y,TAN Z. Stability of steady states of the compressible Euler-Poisson system in R[J]. J Math Anal Appl,2015,422:1 058-1 071.[15]PENG Y J. Stability of non-constant equilibrium solutions for Euler-Maxwell equations[J]. J Math Pure Appl,2015,103:39-67.[16]KLAINERMAN S,MAJDA A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[J]. Commun Pure Appl Math,1981,34:481-524.

相似文献/References:

[1]周爽,杨永富.R3上非等熵Euler-Maxwell系统稳态解的全局稳定性(英文)[J].南京师范大学学报(自然科学版),2020,43(01):23.[doi:10.3969/j.issn.1001-4616.2020.01.005]
 ZhouShuang,YangYongfu.GlobalStabilityofLargeSteady-StatestoaNon-IsentropicEuler-MaxwellSysteminR3[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(04):23.[doi:10.3969/j.issn.1001-4616.2020.01.005]

备注/Memo

备注/Memo:
收稿日期:2017-03-17.
基金项目:国家自然科学基金(11571092).
通讯联系人:杨永富,副教授,研究方向:偏微分方程. E-mail:yyang@hhu.edu.cn
更新日期/Last Update: 2017-12-30