[1]刘 丽,曲若文,康宝林,等.具有抗药性发展的非自治害虫治理模型研究[J].南京师范大学学报(自然科学版),2018,41(01):30.[doi:10.3969/j.issn.1001-4616.2018.01.007]
 Liu Li,Qu Ruowen,Kang Baolin,et al.Study on a Non-autonomous Pest Management Modelwith Resistance Development[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):30.[doi:10.3969/j.issn.1001-4616.2018.01.007]
点击复制

具有抗药性发展的非自治害虫治理模型研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年01期
页码:
30
栏目:
·数学·
出版日期:
2018-03-31

文章信息/Info

Title:
Study on a Non-autonomous Pest Management Modelwith Resistance Development
文章编号:
1001-4616(2018)01-0030-05
作者:
刘 丽12曲若文3康宝林1刘 兵1
(1.鞍山师范学院数学与信息科学学院,辽宁 鞍山 114007)(2.辽宁师范大学数学学院,辽宁 大连 116029)(3.鞍山市第一中学,辽宁 鞍山 114000)
Author(s):
Liu Li12Qu Ruowen3Kang Baolin1Liu Bing1
(1.College of Mathematics and Information Science,Anshan Normal University,Anshan 114007,China)(2.Department of Mathematics,Liaoning Normal University,Dalian 116029,China)(3.Anshan No.1 Middle School,Anshan 114000,China)
关键词:
抗药性杀虫剂作用函数非自治害虫治理模型害虫灭绝
Keywords:
resistance to pesticidespesticide functionnon-autonomous pest management modelpest extinction
分类号:
O175.1
DOI:
10.3969/j.issn.1001-4616.2018.01.007
文献标志码:
A
摘要:
考虑到杀虫剂对害虫种群的作用具有一定的残留作用,以及同一种杀虫剂长期且单一的使用会使害虫对杀虫剂产生抗药性,同时考虑到自然界害虫种群的发展变化受时间影响以及人类对害虫的治理都是呈周期性变化,本文建立了在杀虫剂作用函数影响下的具有抗药性发展的非自治单种群害虫治理模型,给出了害虫灭绝的临界条件,并依据临界条件给出了杀虫剂的切换策略.
Abstract:
Considering the residual effect of pesticides on pest populations,the pest resistance to pesticides which developed by the long-term and single use of the same pesticide,the effects of the development of pest populations in the nature affected by the time and a periodic change about the human controlling for the pest,a non-autonomous single-species pest management model with resistance development under the influence of pesticide function is established. Further,the critical condition of pest extinction is given. According to the critical condition,the switching strategy of pesticides is obtained.

参考文献/References:

[1] LU Z H,CHI X B,CHEN L S. Impulsive control strategies in biological control of pesticide[J]. Theoretical population biology,2003,64(1):39-47.
[2]LIU X N,CHEN L S. Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J]. Chaos,solitons and fractals,2003,16(2):311-320.
[3]LIU B,ZHANG Y J,CHEN L S. Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy[J]. Int J Bifurcat Chaos,2005,15(2):517-531.
[4]LI C T,TANG S Y. The effects of pulse spraying and releasing periods dynamics of generalized predator-prey model[J]. International journal of biomathematics,2012,5(1):1250012.
[5]韩静光,刘兵,王洪娇. 具有抗性发展和轮换使用杀虫剂的综合害虫治理模型的动力学性质[J]. 信阳师范学院学报(自然科学版),2015,28(1):1-3.
[6]王定丽,刘兵,康宝林. 基于杀虫剂作用函数的一类生育脉冲害虫治理模型的研究[J]. 生物数学学报,2017,32(1):84-88.
[7]梁菊花. 基于综合害虫治理策略的混合模型研究[D]. 西安:陕西师范大学,2013.
[8]康宝林. 基于脉冲微分方程的害虫治理策略研究[D]. 大连:大连理工大学,2016.
[9]吴文. 周期环境和综合控制策略对害虫控制影响的研究[D]. 西安:陕西师范大学,2011.
[10]顾云开,刘兵,刘万波. 杀虫剂函数影响下非自治周期害虫综合治理模型的研究[J]. 信阳师范学院学报(自然科学版),2017,30(1):9-12.
[11]VANCE R R,CODDINGTON E A. A nonautonomous model of population growth[J]. Journal of mathematical biology,1989,2:340-367.

备注/Memo

备注/Memo:
收稿日期:2017-10-15.
基金项目:国家自然科学基金(11371030)、辽宁省自然科学基金(20170540001).
通讯联系人:刘兵,博士,教授,研究方向:生物数学. E-mail:liubing529@126.com
更新日期/Last Update: 2018-03-31