[1]胡 边,刘 娜,刘 红.锯齿型石墨烯纳米带边界态[J].南京师范大学学报(自然科学版),2018,41(01):42.[doi:10.3969/j.issn.1001-4616.2018.01.009]
 Hu Bian,Liu Na,Liu Hong.Study of Edge States in Zigzag Graphene Nanoribbon[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):42.[doi:10.3969/j.issn.1001-4616.2018.01.009]
点击复制

锯齿型石墨烯纳米带边界态()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年01期
页码:
42
栏目:
·物理学·
出版日期:
2018-03-31

文章信息/Info

Title:
Study of Edge States in Zigzag Graphene Nanoribbon
文章编号:
1001-4616(2018)01-0042-08
作者:
胡 边刘 娜刘 红
南京师范大学物理科学与技术学院,江苏 南京 210023
Author(s):
Hu BianLiu NaLiu Hong
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
锯齿型石墨烯纳米带能带结构自旋轨道耦合边界态
Keywords:
zigzag graphene nanoribbonband structurespin-orbit couplingedge states
分类号:
O469
DOI:
10.3969/j.issn.1001-4616.2018.01.009
文献标志码:
A
摘要:
基于Kane-Mele紧束缚模型,在包含自旋轨道耦合作用和塞曼作用项后,我们又引入更为合理的自洽在位库仑相互作用,分析研究各相互作用项对边界带的能带结构和电子分布特征的影响. 研究结果表明,自旋轨道耦合作用导致自旋简并劈裂出现非常小的能隙,自洽在位库仑相互作用可使能隙增加,边界带范围增加,而塞曼效应却能保护边界带原有的拓扑属性,使边界带穿过能隙,同时也保护边界态在局域边界的自旋极化特征; 4个边界能带由左右两组边界子能带系构成,各边界子能带系在费米能处形成左右能隙和费米波矢,其自旋量子霍尔系统构型属于B型
Abstract:
Based on the Kane-Mele tight binding model,including spin orbit couplings(SOCs)and Zeeman effect,we introduce a more reasonable self-consistent on-site Coulomb interactions(O-CIs)to analyze and study the band structure and the characteristics of electronic distribution for edge bands. The research results show that the SOCs can lead to spin-flitting and let a small energy gap appear,the O-CIs can increase the energy gap and enlarge the region of edge states,and the Zeeman effect can protect the original topological properties of edge bands passing through the energy gap,it also protects the spin polarization characteristics at the edge sites. The four edge bands are classified into the left and the right sets of edge sub-band,corresponding to the left and the right energy gap and Fermi wave vector. Its spin quantum Hall system belongs to the type B.

参考文献/References:

[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
[2]TOMBROS N,JOZSA C,POPINCIUC M,et al. Electronic spin transport and spin precession in single graphene layers at room temperature[J]. Nature,2007,448:571-574.
[3]WILLIAMS J R,DICARLO L,MARCUS C M. Quantum Hall effect in a gate-controlled p-n junction of graphene[J]. Science,2007,317:638-641.
[4]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438:197-200.
[5]PUREWAL M S,ZHANG Y,KIM P. Unusual transport properties in carbon based nanoscaled materials:nanotubes and graphene[J]. Physica status solidi,2006,243(13):3 418-3 422.
[6]NETO A H C. The electronic properties of graphene[J]. Vacuum,2008,83(10):1 248-1 252.
[7]NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1996,54(24):17 954-17 961.
[8]SON Y W,COHEN M L,LOUIE S G. Erratum:energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97,216 803-216 806.
[9]PERES N M R,NETO A H C,GUINEA F. Erratum:Conductance quantization in mesoscopic graphene[J]. Phys Rev B,2006,73(23):1 469-1 475.
[10]GUO G P,LIN Z R,TU T,et al. Quantum computation with graphene nanoribbon[J]. New journal of physics,2008,11(12):2 910-2 915.
[11]BERAHMAN M,SHEIKHI M H. Transport properties of zigzag graphene nanoribbon decorated with copper clusters[J]. Journal of applied physics,2014,116:093701-1-093701-8.
[12]LIBISCH F,ROTTER S,BURGD?RFER J. Coherent transport through graphene nanoribbons in the presence of edge disorder[J]. New journal of physics,2012,14(12):1 367-2 630.
[13]PI S T,DOU K P,TANG C S,et al. Site-dependent doping effects on quantum transport in zigzag graphene nanoribbons[J]. Carbon,2015,94:196-201.
[14]EZAWA M. Peculiar width dependence of the electronic property of carbon nanoribbons[J]. Physics,2006,73(4):5 432-5 440.
[15]FUJITA M,WAKABAYASHI K,NAKADA K,et al. Peculiar localized state at zigzag graphite edge[J]. Journal of the physical society of Japan,2013,65:1 920-1 923.
[16]NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1997,54(24):17 954-17 961.
[17]YANG L,COHEN M L,LOUIE S G. Magnetic edge-state excitons in zigzag graphene nanoribbons[J]. Phys Rev Lett,2008,101(18):186 401-186 404.
[18]WAKABAYASHI K. 12-electronic and magnetic properties of nanographites[J]. Phys Rev B,1999,59(12):279-304.
[19]YAO W,YANG S A,NIU Q. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2009,102:096801-096804.
[20]SON Y W,COHEN M L,LOUIE S G. Half-metallic graphene nanoribbons[J]. Nature,2006,444:347-349.
[21]GUO J,GUNLYCKE D,WHITE C T. Field effect on spin-polarized transport in graphene nanoribbons[J]. Applied physics letters,2008,92(16):163 109-163 111.
[22]GUNLYCKE D,ARESHKIN D A,LI J,et al. Graphene nanostrip digital memory device[J]. Nano letters,2008,7(12):3 608-3 611.
[23]BARINGHAUS J,MING R,EDLER F,et al. Exceptional ballistic transport in epitaxial graphene nanoribbons[J]. Nature,2014,506:349-354.
[24]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):186 602-186 606.
[25]DRESSELHAUS G F,DRESSELHAUS M S. Spin-orbit interaction in graphite[J]. Phys Rev,1965,140(A401):433-440.
[26]BYCHKOV Y A,RASHBA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of physics C solid state physics,1984,17(33):6 039-6 045.
[27]YAO Y,YE F,QI X L,et al. Spin-orbit gap of graphene:first-principles calculations[J]. Phys Rev B,2007,75(4):041401-041404.
[28]KANE C L,MELE E J. Quantum spin Hall effect in graphene[J]. Phys Rev Lett,2005,95(22):226 801-226 804.
[29]KANE C L,MELE E J. Z2 topological order and the quantum spin Hall effect[J]. Phys Rev Lett,2005,95(14):6 802-6 805.
[30]LI H,SHENG L,XING D Y. Connection of edge states to bulk topological invariance in a quantum spin Hall state[J]. Phys Rev Lett,2012,108(19):196 806-196 810.
[31]盛利. 自旋陈数理论和时间反演对称破缺的量子自旋霍尔效应[J]. 物理学进展,2014(1):10-27.
[32]EZAWA M. Valley-polarized metals and quantum anomalous Hall effect in silicene[J]. Phys Rev Lett,2012,109(5):515-565.
[33]EZAWA M. Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons[J]. Applied physics letters,2013,102(17):172 103-172 107.
[34]KIKUTAKE K,EZAWA M,NAGAOSA N. Edge states in silicene nanodisks[J]. Phys Rev B,2013,88:4 629-4 638.
[35]BARINGHAUS J,MING R,EDLER F,et al. Exceptional ballistic transport in epitaxial graphene nanoribbons[J]. Nature,2014,506(7488):349-354.
[36]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):186 602-186 606.
[37]DROTH M,BURKARD G. Electron spin relaxation in graphene nanoribbon quantum dots[J]. Phys Rev B,2013,87(20):205 432-205 442.
[38]HUERTAS H D,GUINEA F,BRATAAS A. Spin-orbit coupling in curved graphene,fullerenes,nanotubes,and nanotube caps[J]. Phys Rev B,2006,74(15):2 952-2 961.
[39]WANG Z,HAO N,ZHANG P. Topological winding properties of spin edge states in Kane-Mele graphene model[J]. Phys Rev B,2009,80(11):754-758.
[40]QIAO Z,TSE W K,JIANG H,et al. Two-dimensional topological insulator state and topological phase transition in bilayer graphene[J]. Phys Rev Lett,2011,107(25):1-9.
[41]HU J,ALICEA J,WU R,et al. Giant topological insulator gap in graphene with 5d adatoms[J]. Phys Rev Lett,2012,109(26):266 801-266 805.
[42]CASTRO NETO A H,GUINEA F. Impurity-induced spin-orbit coupling in graphene.[J]. Phys Rev Lett,2009,103(2):026804-026807.
[43]WANG H,PI S T,KIM J,et al. Possibility of realizing quantum spin Hall effect at room temperature in stanene/Al2O3(0001)[J]. Phys Rev B,2016,94(3):035112-035126.
[44]MA Y,DAI Y,NIU C,et al. Halogenated two-dimensional germanium:candidate materials for being of quantum spin Hall state[J]. Journal of materials chemistry,2012,22(25):12 587-12 591.
[45]WANG Y,SHENG Y,YANG A,et al. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2008,102(102):096801-096804.
[46]FUJITA M,NAKADA K,WAKABAYASHI K,et al. Peculiar electronic state on graphite edge:finite size effect on graphite[C]//Meeting of the Physical Society of Japan. The Physical Society of Japan. Japan,1996.
[47]HUBBARD J. Electron correlations in narrow energy bands[J]. Proc R Soc London A,1963,276:238-257.
[48]王雪梅,刘红. 锯齿型石墨烯纳米带的能带研究[J]. 物理学报,2011,60(4):047102-047112.
[49]LIU H,HU B,LIU N. The opposite induced magnetic moment in narrow zigzag graphene nanoribbons[J]. Phys Lett A,2016,380(44):3 738-3 742.
[50]STAROSTIN E L,GH V D H. The shape of a M?bius strip[J]. Nature material,2007,6(8):563-567.
[51]LU Y,ZHAO S,ZHANG Y,et al. Valley-polarized insulating states in zigzag silicene nanoribbons[J]. Materials research express,2014,1(4):045009-045019.
[52]LU Y,LU W,LIANG W,et al. Energy splitting and optical activation of triplet excitons in zigzag-edged graphene nanoribbons[J]. Phys Rev B,2013,88(16):608-613.

相似文献/References:

[1]刘 娜,胡 边,刘 红.环境对窄锯齿型石墨烯纳米带中边界带的影响[J].南京师范大学学报(自然科学版),2018,41(02):54.[doi:10.3969/j.issn.1001-4616.2018.02.010]
 Liu Na,Hu Bian,Liu Hong.Influence of Environment on Edge Band ofNarrow Zigzag Graphene Nanoribbons[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):54.[doi:10.3969/j.issn.1001-4616.2018.02.010]

备注/Memo

备注/Memo:
收稿日期:2017-04-17.
基金项目:国家自然科学基金(10947004).
通讯联系人:刘红,教授,研究方向:低维凝聚态物理理论. E-mail:liuhong3@njnu.edu.cn
更新日期/Last Update: 2018-03-31