参考文献/References:
[1] SWEEDLER M E. Hopf algebras[M]. Benjamin:New York,1969.
[2]CARNOVALE G,CUADRA J. On the subgroup structure of the full Brauer group of Sweedler Hopf algebra[J]. Israel journal of mathematics,2011,183(1):61-92.
[3]OYSTAEYEN F V,ZHANG Y H. The Brauer group of Sweedler’s Hopf algebra H4[J]. Proceedings of the American mathematical society,2001,129(2):371-380.
[4]JONI S A,ROTA G C. Coalgebra and bialgebra in combinatories[J]. Studies in applied mathematics,1979,61:93-139.
[5]AGUIAR M. Infinitesimal Hopf algebras[J]. Contemporary mathematics,2000,267:1-30.
[6]AGUIAR M. Infinitesimal Hopf algebras and the cd-index of polytopes,in:Geometric combinatorics[J]. Discrete computational geometry,2002,27:3-28.
[7]EHRENBORG R,READDY M. Coproducts and the cd-index[J]. Journal of algebraic combinatorics,1998,8:273-299.
[8]FOISSY L. The infinitesimal Hopf algebra and the poset of planar forests[J]. Journal of algebraic combinatorics,2009,30:27-309.
[9]MAKHLOUF A. Hom-alternative algebras and Hom-Jordan algebras[J]. arXiv,0909,0326.
[10]DRINFEL’D V G. Hamiltonian structures on Lie groups,Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations[J]. Soviet mathematics-doklady,1983,268:285-287.
[11]DRINFEL’D V G.Quantum groups[C]//Proceedings Int Congress of Mathematicians. Berkeley,Colifornic,1986:798-820.
[12]FARINATI M A,JANCSA A P. Trivial central extensions of Lie bialgebras[J]. Journal of algebra,2013,390:56-76.
[13]HALBOUT G. Formality theorem for Lie bialgebras and quantization of twists and coboundary trices[J]. Advances in mathematics,2006,207:617-633.