[1]刘任远,郑慧慧,严佳玲,等.由Sweedler四维代数构造无穷小Hopf代数[J].南京师范大学学报(自然科学版),2019,42(04):17-24.[doi:10.3969/j.issn.1001-4616.2019.04.003]
 Liu Renyuan,Zheng Huihui,Yan Jialing,et al.The Construction of Infinitesimal Hopf Algebraon the Sweedler 4-Dimensional Algebra[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):17-24.[doi:10.3969/j.issn.1001-4616.2019.04.003]
点击复制

由Sweedler四维代数构造无穷小Hopf代数()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年04期
页码:
17-24
栏目:
·数学与计算机科学·
出版日期:
2019-12-30

文章信息/Info

Title:
The Construction of Infinitesimal Hopf Algebraon the Sweedler 4-Dimensional Algebra
文章编号:
1001-4616(2019)04-0017-08
作者:
刘任远郑慧慧严佳玲张良云
南京农业大学理学院,江苏 南京 210095
Author(s):
Liu RenyuanZheng HuihuiYan JialingZhang Liangyun
College of Science,Nanjing Agricultural University,Nanjing 210095,China
关键词:
Sweedler四维代数无穷小双代数无穷小Hopf代数拟三角无穷小Hopf代数
Keywords:
Sweedler 4-dimensional algebrainfinitesimal bialgebrainfinitesimal Hopf algebraquasitriangular infinitesimal Hopf algebra
分类号:
O153.3
DOI:
10.3969/j.issn.1001-4616.2019.04.003
文献标志码:
A
摘要:
本文主要由Sweedler四维代数及其子代数,构造无穷小Hopf代数及其拟三角结构.
Abstract:
this paper,we mainly construct infinitesimal Hopf algebra and its quasi-triangle Hopf algebra from the Sweedler 4-dimensional algebra and its subalgebras.

参考文献/References:

[1] SWEEDLER M E. Hopf algebras[M]. Benjamin:New York,1969.
[2]CARNOVALE G,CUADRA J. On the subgroup structure of the full Brauer group of Sweedler Hopf algebra[J]. Israel journal of mathematics,2011,183(1):61-92.
[3]OYSTAEYEN F V,ZHANG Y H. The Brauer group of Sweedler’s Hopf algebra H4[J]. Proceedings of the American mathematical society,2001,129(2):371-380.
[4]JONI S A,ROTA G C. Coalgebra and bialgebra in combinatories[J]. Studies in applied mathematics,1979,61:93-139.
[5]AGUIAR M. Infinitesimal Hopf algebras[J]. Contemporary mathematics,2000,267:1-30.
[6]AGUIAR M. Infinitesimal Hopf algebras and the cd-index of polytopes,in:Geometric combinatorics[J]. Discrete computational geometry,2002,27:3-28.
[7]EHRENBORG R,READDY M. Coproducts and the cd-index[J]. Journal of algebraic combinatorics,1998,8:273-299.
[8]FOISSY L. The infinitesimal Hopf algebra and the poset of planar forests[J]. Journal of algebraic combinatorics,2009,30:27-309.
[9]MAKHLOUF A. Hom-alternative algebras and Hom-Jordan algebras[J]. arXiv,0909,0326.
[10]DRINFEL’D V G. Hamiltonian structures on Lie groups,Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations[J]. Soviet mathematics-doklady,1983,268:285-287.
[11]DRINFEL’D V G.Quantum groups[C]//Proceedings Int Congress of Mathematicians. Berkeley,Colifornic,1986:798-820.
[12]FARINATI M A,JANCSA A P. Trivial central extensions of Lie bialgebras[J]. Journal of algebra,2013,390:56-76.
[13]HALBOUT G. Formality theorem for Lie bialgebras and quantization of twists and coboundary trices[J]. Advances in mathematics,2006,207:617-633.

备注/Memo

备注/Memo:
收稿日期:2018-11-17.
基金项目:国家自然科学基金资助(11571173).
通讯联系人:张良云,博士,教授,研究方向:Hopf代数. E-mail:zlyun@njau.edu.cn
更新日期/Last Update: 2019-12-31