[1]郭海荣,王 锋.抛物型方程的混合虚拟有限元方法[J].南京师范大学学报(自然科学版),2019,42(04):25-30.[doi:10.3969/j.issn.1001-4616.2019.04.004]
 Guo Hairong,Wang Feng.Mixed Virtual Element Methods for Parabolic Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):25-30.[doi:10.3969/j.issn.1001-4616.2019.04.004]
点击复制

抛物型方程的混合虚拟有限元方法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年04期
页码:
25-30
栏目:
·数学与计算机科学·
出版日期:
2019-12-30

文章信息/Info

Title:
Mixed Virtual Element Methods for Parabolic Equations
文章编号:
1001-4616(2019)04-0025-06
作者:
郭海荣1王 锋2
(1.南京财经高等职业技术学校,江苏 南京 210029)(2.南京师范大学数学科学学院,江苏 南京 210023)
Author(s):
Guo Hairong1Wang Feng2
(1.Nanjing Vocational College of Finance and Economics,Nanjing 210029,China)(2.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
关键词:
虚拟有限元混合元抛物问题
Keywords:
virtual elementmixed finite elementparabolic equation
分类号:
O214.82
DOI:
10.3969/j.issn.1001-4616.2019.04.004
文献标志码:
A
摘要:
虚拟有限元是定义在任意多边形或多面体网格上的有限元. 本文研究了抛物型方程的混合虚拟有限元方法,给出了先验误差估计,并给出了一些数值实验进行验证.
Abstract:
Virtual elements are defined on arbitrary polygonal or polyhedral grids. In this paper,mixed virtual elements are proposed for parabolic equations. We present a priori error estimates,which are verified by some numerical experiments.

参考文献/References:

[1] MU L,WANG J,XIU YE. Weak Galerkin finite element methods on polytopal meshes[J]. International journal of numerical analysis & modeling,2015,12(1):31-53.
[2]DI PIETRO D,ERN A. A hybrid high-order locking-free method for linear elasticity on general meshes[J]. Computer methods in applied mechanics and engineering,2015,283:1-21.
[3]BEIR?O da V L,BREZZI F,CANGIANI A,et al. Basic principle of virtual element methods[J]. Mathematical models and methods in applied sciences,2013,23(1):199-214.
[4]VACCA G,BEIR?O da V L. Virtual element methods for parabolic problems on polygonal meshes[J]. Numerical methods for partial differential equations,2015,31(6):2110-2134.
[5]BREZZI F,FALK R S,MARINI L D. Basic principles of mixed virtual element methods[J]. ESAIM:mathematical modelling and numerical analysis,2014,48(4):1227-1240.
[6]BEIR?O da VEIGA L,BREZZI F,MARINI L D,et al. H(div)and H(curl)-conforming virtual element methods[J]. Numerische mathematik,2016,133(2):303-33.
[7]CHEN L,WANG F. A divergence free weak virtual element method for the Stokes problem on polytopal meshes[J]. Journal of scientific computing,2019,78(2):864-886.
[8]ERN A,GUERMOND J. Theory and Practice of Finite Elements[M]. Volume 159 of Applied Mathematical series. New York:Springer,2004.

备注/Memo

备注/Memo:
收稿日期:2019-04-21.
基金项目:国家自然科学基金(11871272).
通讯联系人:王锋,博士,副教授,研究方向:偏微分方程数值解. E-Mail:fengwang@live.cn
更新日期/Last Update: 2019-12-31