[1]杨 金,陈 林,周 强,等.基于数据的K均值理论及其应用[J].南京师大学报(自然科学版),2021,44(02):10-17.[doi:10.3969/j.issn.1001-4616.2021.02.003]
 Yang Jin,Chen Lin,Zhou Qiang,et al.Application of K-Means Theory Based on Data[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):10-17.[doi:10.3969/j.issn.1001-4616.2021.02.003]
点击复制

基于数据的K均值理论及其应用()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第44卷
期数:
2021年02期
页码:
10-17
栏目:
·数学·
出版日期:
2021-06-30

文章信息/Info

Title:
Application of K-Means Theory Based on Data
文章编号:
1001-4616(2021)02-0010-08
作者:
杨 金1陈 林1周 强2陈建勋1
(1.重庆交通大学数学与统计学院,重庆 400074)(2.重庆南开中学,重庆 400074)
Author(s):
Yang Jin1Chen Lin1Zhou Qiang2Chen Jianxun1
(1.Chongqing Jiaotong University,Chongqing 400074,China)(2.Chongqing Nankai Middle School,Chongqing 400074,China)
关键词:
K-均值聚类主成分分析数据处理特征参数
Keywords:
K-means clusterprincipal component analysisdata processingcharacteristic parameter
分类号:
O175.13
DOI:
10.3969/j.issn.1001-4616.2021.02.003
文献标志码:
A
摘要:
首先使用主成分分析方法对车辆行驶工况的特征参数进行处理,然后利用K-均值聚类原理对所有具有代表性的运动学片段进行聚类分析,由此得出汽车行驶工况的数学原理. 为汽车节能减排的发展和建立能够正确反映我国道路工况特征的行驶工况提供理论依据.
Abstract:
In this paper,the principal component analysis method is used to process the characteristic parameters of vehicle driving conditions,and the K-means clustering principle is used to cluster all the representative kinematics fragments,and then the mathematical principle of vehicle driving conditions is obtained. It provides a theoretical basis for the development of automobile energy saving and emission reduction and the establishment of driving conditions that can accurately reflect the characteristics of road conditions in China.

参考文献/References:

[1] HO S H,WONG Y D,CHANG W C. Developing singapore driving cycle for passenger cars to estimate fuel consumption and vehicular emissions[J]. Atmospheric environment,2014,97:353-362.
[2]LIN J,NIEMEIER D A. An exploratory analysis comparing a stochastic driving cycle to California’s regulatory cycle[J]. Atmospheric environment,2002,36(38):5759-5770.
[3]姜平,石琴,陈无畏. 基于小波分析的城市道路行驶工况构建的研究[J]. 汽车工程,2011,33(1):70-73.
[4]石琴,郑与波,姜平. 基于运动学片段的城市道路行驶工况的研究[J]. 汽车工程,2011,33(3):256-261.
[5]ANDERSON T W. Asymptotic theory for principal component analysis[J]. Annals of mathematical statistics,1963,34(1):122-148.
[6]余平. 基于FPCA的部分函数型线性模型的复合分位数回归估计[J]. 山西师范大学学报(自然科学版),2019,33(3):5-12.
[7]YEUNG K Y,RUZZO W L. Principal component analysis for clustering gene expression data[J]. Bioinformatics,2019,17(9):763-74.
[8]KORHONEN P,SILJAMKI A. Ordinal principal component analysis theory and an application[J]. Computational statistics & data analysis,1998,26(4):411-424.
[9]白奕. 多指标综合评价的主成分分析模型及原理[J]. 陕西师范大学学报(自然科学版),1998,26(2):105-106.
[10]刘靖明,韩丽川,侯立文. 基于粒子群的K均值聚类算法[J]. 系统工程理论与实践,2005,25(6):54-58.
[11]温瑞英,王红勇. 基于因子分析和K-means聚类的空中交通复杂性评价[J]. 太原理工大学学报,2016,47(3):384-388,404.
[12]DING C,HE X. K-means clustering via principal component analysis[J]. Applied and computational mathematics,2004,1:1-8.

相似文献/References:

[1]宋佳莹,葛亚平.基于Logistic回归在二分类型任务定价模型中的应用[J].南京师大学报(自然科学版),2018,41(04):33.[doi:10.3969/j.issn.1001-4616.2018.04.007]
 Song Jiaying,Ge Yaping.The Application of Logistic Regression in Binary Task Pricing Model[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):33.[doi:10.3969/j.issn.1001-4616.2018.04.007]
[2]丁凯孟,朱长青,罗 文,等.基于自适应PCNN与PCA的遥感影像感知哈希认证算法[J].南京师大学报(自然科学版),2019,42(02):17.[doi:10.3969/j.issn.1001-4616.2019.02.003]
 Ding Kaimeng,Zhu Changqing,Luo Wen,et al.Perceptual Hash Algorithm Based on Adaptive PCNNand PCA for Remote Sensing Image Authentication[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):17.[doi:10.3969/j.issn.1001-4616.2019.02.003]
[3]吴 菊,乔伟峰,王亚华.1990年以来苏州城市化发展过程及其驱动机制研究[J].南京师大学报(自然科学版),2020,43(03):99.[doi:10.3969/j.issn.1001-4616.2020.03.016]
 Wu Ju,Qiao Weifeng,Wang Yahua.Study on the Process of Urbanization Development and ItsDriving Mechanism in Suzhou Since 1990[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(02):99.[doi:10.3969/j.issn.1001-4616.2020.03.016]

备注/Memo

备注/Memo:
收稿日期:2020-10-26.
基金项目:国家自然科学基金项目(11801047)、重庆市自然科学基金项目(cstc2019jcyj-msxmX0755)、重庆市研究生导师团队建设项目(JDDSTD201802)、重庆市教委科学技术研究项目(自然科学类)(KJQN201900707)、重庆市教育科学规划课题(2020-07-203).
通讯作者:杨金,博士,副教授,研究方向:生物数学. E-mail:seehom@126.com
更新日期/Last Update: 2021-06-30