[1]洪明理,李林锐,黄代文.带有不定线性部分的薛定谔方程的多解存在性[J].南京师大学报(自然科学版),2021,44(03):9-13.[doi:10.3969/j.issn.1001-4616.2021.03.002]
 Hong Mingli,Li Linrui,Huang Daiwen.Multiple Solutions of a Schr?inger Equation with Indefinite Nonlinearity[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):9-13.[doi:10.3969/j.issn.1001-4616.2021.03.002]
点击复制

带有不定线性部分的薛定谔方程的多解存在性()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第44卷
期数:
2021年03期
页码:
9-13
栏目:
·数学·
出版日期:
2021-09-15

文章信息/Info

Title:
Multiple Solutions of a Schr?inger Equation with Indefinite Nonlinearity
文章编号:
1001-4616(2021)03-0009-05
作者:
洪明理1李林锐1黄代文2
(1.防灾科技学院,三河 065201)(2.北京应用物理与计算数学研究所,北京 100088)
Author(s):
Hong Mingli1Li Linrui1Huang Daiwen2
(1.Institute of Disaster Prevention,Sanhe 065201,China)(2.Institute of Applied Physics and Computational Mathematics,Beijing 100088,China)
关键词:
薛定谔方程不定线性部分径向解
Keywords:
Schr?inger equationindefinite nonlinearityradial solutions
分类号:
O177
DOI:
10.3969/j.issn.1001-4616.2021.03.002
文献标志码:
A
摘要:
本文研究如下薛定谔方程:-Δu=V(|x|)u+f(|x|,u),x∈RN,u∈H1(RN). 在V和f满足一定的假设下,我们得到了该方程的无穷多个径向解的存在性.
Abstract:
In this paper,we consider the following Schr?inger equation:-Δu=V(|x|)u+f(|x|,u),x∈RN,u∈H1(RN). Under some assumptions of V and f,we obtain infinitely many radial solutions of the above equation.

参考文献/References:

[1] BARTSCH T,WILLEM M. Infinitely many nonradial solutions of a Euclidean scalar field equation[J]. Journal of functional analysis,1993,117:447-460.
[2]STRUWE M. Multiple solutions of differential equations without the Palais-Smale condition[J]. Mathematische annalen,1992,261:339-412.
[3]STRAUSS W A. Existence of solitary waves in higher dimensions[J]. Communications in mathematical physics,1977,55:149-162.
[4] ALAMA S,DEL PINO M. Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking[J]. Annales DE L insttitut henri poincare-analyse nonlineaire,1996,13:95-115.
[5]BADIALE M,NABANA E. A remark on multiplicity of solutions for semilinear elliptic problems with indefinite nonlinearity[J]. Comptes rendus deI’sAcadémie des sciences-series I-mathematics,1996,323(2):151-156.
[6]LI Y Q,CHEN J Q. On a semilinear elliptic equation with indefinite linear part[J]. Nonlinear analysis,2002,48:399-410.
[7]CHEN J Q,LI S J. Existence and multiplicity of nontrivial solutions for elliptic equation on RN with indefinite linear part[J]. Manuscripta mathematica,2003,111:221-239.
[8]COSTA D,TEHRANI H. Existence of positive solutions for a class of indefinite elliptic problems in RN with indefinite linear part[J]. Manuscripta mathematica,2003,111:221-239.
[9]COSTA D,TEHRANI H. Existence of positive solutions for a class of indefinite elliptic problems in . Calculus of variations and partial differential equations,2001,13:159-189.
[10]WILLEM M. Minimax Theorems[M]. Birkh?ser:Boston,1996.
[11]PALAIS R S. The principle of symmetric criticality[J]. Communications in mathematical physics,1979,69:19-30.

相似文献/References:

[1]曹丽娜,刘 红.势垒中粒子波包的运动[J].南京师大学报(自然科学版),2013,36(03):37.
 Cao Lina,Liu Hong.Wave Packet Dynamics of Particles in Potential Barriers[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):37.
[2]唐兴栋.SchrdingerHartree方程爆破解的存在性[J].南京师大学报(自然科学版),2014,37(02):33.
 Tang Xingdong.Blowup Solutions to the SchrdingerHartree Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):33.
[3]骆 敏,程子恒,包建阳.电子在斐波那契量子阱结构中的能量性质[J].南京师大学报(自然科学版),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
 Luo Min,Cheng Ziheng,Bao Jianyang.Electronic Energy Properties of the Fibonacci Quantum Wells Structure[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]

备注/Memo

备注/Memo:
收稿日期:2021-04-26.
基金项目:廊坊市科技支撑计划项目(2021011043)、国家自然科学基金面上项目(12071192).
通讯作者:洪明理,硕士,副教授,研究方向:非线性分析. E-mail:hongmingli001@163.com
更新日期/Last Update: 2021-09-15