参考文献/References:
[1] BARTSCH T,WILLEM M. Infinitely many nonradial solutions of a Euclidean scalar field equation[J]. Journal of functional analysis,1993,117:447-460.
[2]STRUWE M. Multiple solutions of differential equations without the Palais-Smale condition[J]. Mathematische annalen,1992,261:339-412.
[3]STRAUSS W A. Existence of solitary waves in higher dimensions[J]. Communications in mathematical physics,1977,55:149-162.
[4] ALAMA S,DEL PINO M. Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking[J]. Annales DE L insttitut henri poincare-analyse nonlineaire,1996,13:95-115.
[5]BADIALE M,NABANA E. A remark on multiplicity of solutions for semilinear elliptic problems with indefinite nonlinearity[J]. Comptes rendus deI’sAcadémie des sciences-series I-mathematics,1996,323(2):151-156.
[6]LI Y Q,CHEN J Q. On a semilinear elliptic equation with indefinite linear part[J]. Nonlinear analysis,2002,48:399-410.
[7]CHEN J Q,LI S J. Existence and multiplicity of nontrivial solutions for elliptic equation on RN with indefinite linear part[J]. Manuscripta mathematica,2003,111:221-239.
[8]COSTA D,TEHRANI H. Existence of positive solutions for a class of indefinite elliptic problems in RN with indefinite linear part[J]. Manuscripta mathematica,2003,111:221-239.
[9]COSTA D,TEHRANI H. Existence of positive solutions for a class of indefinite elliptic problems in . Calculus of variations and partial differential equations,2001,13:159-189.
[10]WILLEM M. Minimax Theorems[M]. Birkh?ser:Boston,1996.
[11]PALAIS R S. The principle of symmetric criticality[J]. Communications in mathematical physics,1979,69:19-30.
相似文献/References:
[1]曹丽娜,刘 红.势垒中粒子波包的运动[J].南京师大学报(自然科学版),2013,36(03):37.
Cao Lina,Liu Hong.Wave Packet Dynamics of Particles in Potential Barriers[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):37.
[2]唐兴栋.SchrdingerHartree方程爆破解的存在性[J].南京师大学报(自然科学版),2014,37(02):33.
Tang Xingdong.Blowup Solutions to the SchrdingerHartree Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):33.
[3]骆 敏,程子恒,包建阳.电子在斐波那契量子阱结构中的能量性质[J].南京师大学报(自然科学版),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
Luo Min,Cheng Ziheng,Bao Jianyang.Electronic Energy Properties of the Fibonacci Quantum Wells Structure[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]