参考文献/References:
[1] 李扬,李竟翔,马双鸽. 不平衡数据的企业财务预警模型研究[J]. 数理统计与管理,2016,35(5):893-906.
[2]马超群,何文. 基于Cox的财务困境时点预测模型研究[J]. 统计与决策,2010(21):38-42.
[3]王小燕,袁欣. 基于惩罚组变量选择的Cox财务危机预警模型[J]. 系统工程,2018,36(3):113-121.
[4]KALBFLEISCH J D,PRENTICE R L. The statistical analysis of failure time data[M]. 2nd ed. New Jersey:John Wiley & Sons,Inc,2002.
[5]SUN J. The statistical analysis of interval-censored failure time data[M]. New York:Springer,2006.
[6]高珍,柯阿香,余荣杰,等. 基于随机生存森林的交通事件持续时间预测[J]. 同济大学学报(自然科学版),2017,45(9):1304-1310.
[7]ISHWARAN H,KOGALUR U B,BLACKSTONE E H,et al. Random survival forests[J]. The annals of applied statistics,2008,2(3):841-860.
[8]王呈斌,方匡南,郑陈璐. 基于随机生存森林的房屋贷款逾期研究[J]. 上海金融,2020(2):59-63.
[9]MOGENSEN U B,ISHWARAN H,GERDS T A. uating random forests for survival analysis using prediction error curves[J]. Journal of statistical software,2012,50(11):1-23.
[10]KIM Y,PARK S,LEE J. Integrated survival model for predicting patent litigation hazard[J]. Sustainability,2021,13(4):1763.
[11]ISHWARAN H,KOGALUR U B,GORODESKI E Z,et al. High-dimensional variable selection for survival data[J]. Journal of the American statistical association,2010,105(489):205-217.
[12]鲍新中,陶秋燕,傅宏宇. 基于变量聚类和Cox比例风险模型的企业财务预警研究[J]. 系统管理学报,2015,24(4):517-523,529.
相似文献/References:
[1]张大鹏,程学亮,孙明霞.DeephitTM:医学生存分析的时间相关性深度学习模型[J].南京师大学报(自然科学版),2024,(03):138.[doi:10.3969/j.issn.1001-4616.2024.03.017]
Zhang Dapeng,Cheng Xueliang,Sun Mingxia.DeephitTM:a Time-dependent Deep Learning Model for Medical Survival Analysis[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(04):138.[doi:10.3969/j.issn.1001-4616.2024.03.017]