[1]肖玉徽,楼振凯,戴晓震.随机需求下考虑缺货损失变动的最优订购与定价决策[J].南京师大学报(自然科学版),2022,45(03):9-14.[doi:10.3969/j.issn.1001-4616.2022.03.002]
 Xiao Yuhui,Lou Zhenkai,Dai Xiaozhen.Optimal Ordering and Pricing Decisions of a Retailer Under Stochastic Demand with Considering Variable Stockout Cost[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(03):9-14.[doi:10.3969/j.issn.1001-4616.2022.03.002]
点击复制

随机需求下考虑缺货损失变动的最优订购与定价决策()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第45卷
期数:
2022年03期
页码:
9-14
栏目:
数学
出版日期:
2022-09-15

文章信息/Info

Title:
Optimal Ordering and Pricing Decisions of a Retailer Under Stochastic Demand with Considering Variable Stockout Cost
文章编号:
1001-4616(2022)03-0009-06
作者:
肖玉徽1楼振凯2戴晓震3
(1.海口经济学院聚星数字经济学院,海南 海口 571127)(2.北京理工大学管理与经济学院,北京 100081)(3.温州商学院管理学院,浙江 温州 325035)
Author(s):
Xiao Yuhui1Lou Zhenkai2Dai Xiaozhen3
(1.Gathering Stars Digital Econormic College,Haikou University of Economics,Haikou 571127,China)(2.School of Management and Economics,Beijing Institute of Technology,Beijing 100081,China)(3.School of Management,Wenzhou Business College,Wenzhou 325035,China)
关键词:
随机需求订购与定价机会损失极值存在性
Keywords:
tochastic demandordering and pricingopportunity lossexistence of the extremum value
分类号:
F224; F274
DOI:
10.3969/j.issn.1001-4616.2022.03.002
文献标志码:
A
摘要:
研究了需求关于销售价格线性敏感且随机的零售商最优订购与定价问题. 考虑到不同销售价格下单位商品的缺货损失对零售商来说是不同的,给出了机会缺货损失的概念. 接着建立了随机需求下的平衡机会损失与实际利润的最优订购与定价模型,得到了最大化净收益目标下进货量与销售价格的函数关系,并利用该函数将原模型转化为只含一个决策变量的模型. 通过极值存在性的分析给出了零售商最大期望利润为正的必要条件,并进一步给出了需求随机项的概率密度函数可导时利润函数极大值存在的充分条件. 通过所能获得的最大利润,可分析零售商是否值得进行此次的订购与销售. 最后给出一个算例,对文中所获得的结论做一些补充.
Abstract:
This paper studies optimal ordering and pricing issues of a retailer who faces price-linear-sensitive and stochastic demand. By considering variable stockout cost of one item under different retail price,the conception of variable opportunity loss is proposed. Then an ordering and pricing model is constucted under stochastic demand for the purpose of trading off opportunity loss and overordering cost. It is shown that the ordering quantity and the retail price of the retailer meet a unique relation formula,by which the previous model is transformed to another model which only involves one decision variable. By analyzing the existence of the extremum value of the profit function,a necessary condition in which the retailer's profit is positive is presented. Further,a sufficient condition in which the maximal value of the profit function exists is obtained under the assumption that the probability density function of the stochastic item of demand is differentiable. By analyzing the maximal profit,the retailer is able to draw the conclusion for whether or not to order and sales. Finally,a numerical illustration is presented to make some supplements.

参考文献/References:

[1]PANDA S,SAHA S,BASU M. Optimal pricing and lot-sizing for perishable inventory with price and time dependent ramp-type demand[J]. International journal of systems science,2013,44(1):127-138.
[2]SAJADIEH M S,JOKAR M R A. Optimizing shipment,ordering and pricing policies in a two-stage supply chain with price-sensitive demand[J]. Transportation research part E,2009,45(4):564-571.
[3]TANG C S,YIN R. Joint ordering and pricing strategies for managing substitutable products[J]. Production and operations management,2007,16(1):138-153.
[4]CHANG H J,TENG J T,OUYANG L Y,et al. Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging[J]. European journal of operational research,2006,168(1):51-64.
[5]CHEN X,HU P. Joint pricing and inventory management with deterministic demand and costly price adjust[J]. Operations research letters,2012,40(5):385-389.
[6]BURNETAS A N,SMITH C E. Adaptive ordering and pricing for perishable products[J]. Operations research,2000,48(3):436-443.
[7]PETRUZZI N C,DADA M. Pricing and the newsvendor problem:a review with extensions[J]. Operations research,1999,47(2):183-194.
[8]冯颖,蔡小强,涂菶生,等. 随机需求情形下单一易变质产品库存模型的订购与定价策略[J]. 南开大学学报(自然科学版),2010,43(2):106-112.
[9]YANG S L,SHI C M,ZHAO X. Optimal ordering and pricing decisions for a target oriented newsvendor[J]. Omega,2011,39(1):110-115.
[10]刘树人,王娜. 价格相依随机需求下的逆向拍卖采购与定价联合决策[J]. 管理工程学报,2014,28(2):196-200.
[11]ZHANG X B,HUANG S,WAN Z. Optimal pricing and ordering in global supply chain management with constraints under random demand[J]. Applied mathematical modelling,2016,40(23-24):10105-10130.
[12]张爱凤,经有国. 独立随机需求下共享剩余库存的双渠道订货与定价模型[J]. 工业工程与管理,2019,24(1):45-53.
[13]MODAK N M,KELLE P. Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand[J]. European journal of operational research,2019,272(1):147-161.
[14]曹裕,李业梅,李青松. 基于提前支付的非瞬时变质产品批量订货定价策略[J]. 控制与决策,2018,33(2):301-308.
[15]WU J,LI J,WANG S Y,et al. Mean-variance analysis of the newsvendor model with stockout cost[J]. Omega,2009,37(3):724-730.
[16]SHI J M,ZHANG G Q. Multi-product budget-constrained acquisition and pricing with uncertain demand and supplier quantity discounts[J]. International journal of production economics,2010,128(1):322-331.
[17]SHI J M,ZHANG G Q,LAI K K. Optimal ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand[J]. Optimization,2012,61(2):151-162.
[18]SCHWEITZER M E,CACHON G P. Decision bias in the newsvendor problem with a known demand distribution:experimental evidence[J]. Management science,2000,46(3):404-420.
[19]XU X S,MENG Z Q,JI P. On the newsvendor model with conditional Value-at-Risk of opportunity loss[J]. International journal of production research,2016,54(8):2449-2458.
[20]周品,徐和,陈鹏宇,等. 随机需求环境下联产品系统价格与产量决策研究[J]. 管理工程学报,2020,34(2):156-160.

备注/Memo

备注/Memo:
收稿日期:2021-03-17.
基金项目:国家自然科学基金面上项目(71571019)、海南省哲学社会科学规划课题(HNSK(YB)21-11).
通讯作者:楼振凯,博士研究生,研究方向:决策理论与应用. E-mail:louzk@ahut.edu.cn
更新日期/Last Update: 2022-09-15