[1]王大阜,邓志文,贾志勇,等.多维属性视角下学者用户画像构建及合作学者推荐研究[J].南京师大学报(自然科学版),2023,46(03):112-122.[doi:10.3969/j.issn.1001-4616.2023.03.015]
 Wang Dafu,Deng Zhiwen,Jia Zhiyong,et al.Research on the Construction of Scholar User Portrait and the Recommendation of Cooperative Scholars fromthe Perspective of Multidimensional Attributes[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(03):112-122.[doi:10.3969/j.issn.1001-4616.2023.03.015]
点击复制

多维属性视角下学者用户画像构建及合作学者推荐研究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年03期
页码:
112-122
栏目:
计算机科学与技术
出版日期:
2023-09-15

文章信息/Info

Title:
Research on the Construction of Scholar User Portrait and the Recommendation of Cooperative Scholars fromthe Perspective of Multidimensional Attributes
文章编号:
1001-4616(2023)03-0112-11
作者:
王大阜邓志文贾志勇王 静
(中国矿业大学图书馆 江苏 徐州 221116)
Author(s):
Wang DafuDeng ZhiwenJia ZhiyongWang Jing
(Library,China University of Mining and Technology,Xuzhou 221116,China)
关键词:
用户画像智慧图书馆合作学者推荐作者合作网络
Keywords:
user persona smart library recommendation of cooperative scholars author cooperative network
分类号:
TP391.3
DOI:
10.3969/j.issn.1001-4616.2023.03.015
文献标志码:
A
摘要:
从多个维度属性构建学者用户画像,向目标学者推荐属性特征相似度高和易建立合作关系的合作学者,有助于增强学术交流合作、促进科研产出. 本文以学者的论文成果为数据源,设计并探讨了合作学者推荐系统模型. 首先采用Louvain社区发现算法划分学者社团,其次根据学者的基础属性、学术能力、研究兴趣、社交影响力四个维度构建用户画像,并从学者合作网络中获取合作关系强度、Katz相似性指标,最后根据候选学者的融合推荐评分实现合作学者推荐. 通过构建学者用户画像,呈现学者全面的特征信息,赋予推荐结果可解释性. 实证表明本文所提出的推荐模型具有良好的推荐效果,为目标学者的合作学者遴选提供了决策依据.
Abstract:
Building user portraits of scholars from multiple dimension attributes and recommending collaborators who have high similarity in attribute characteristics and are easy to establish cooperative relationships to target scholars will help strengthen academic exchanges and cooperation,promote scientific research output. Taking the bibliographic data of scholars' papers as the data source,this paper designs and discusses the model of collaborative scholars' recommendation system. Firstly,Louvain algorithm is used for community discovery. Secondly,user portraits are constructed according to the four dimensions of scholars' basic attributes,academic ability,research interest,social influence,and indicators of cooperation relationship strength and Katz similarity indicator are obtained from the author's cooperation network. Finally,the recommendation of cooperative scholars can be realized according to the fusion recommendation score of candidate scholars. By constructing a scholar user portrait,the comprehensive characteristic information of the scholar is presented,giving the recommendation results interpretability. The empirical results show that the recommendation model proposed in this paper has a good recommendation effect,which provides a decision-making basis for the selection of cooperative scholars.

参考文献/References:

[1]李杰,陈超美. Citespace:科技文本挖掘及可视化[M]. 北京:首都经济贸易大学出版社,2016.
[2]李春英,汤庸,肖政宏,等. 学术社交网络中的权威学者推荐模型[J]. 计算机应用,2020,40(9):2594-2599.
[3]熊回香,李晓敏,杜瑾. 基于学术关键词与共被引的学者推荐研究[J]. 情报学报,2021,40(7):725-733.
[4]CHAKRABORTY J,THOPUGUNTA G,BANSAL S. Data extraction and integration for scholar recommendation system[C]//IEEE International Conference on Semantic Computing,Los Alamitos,CA,2018:397-402.
[5]刘萍,郑凯伦,邹德安. 基于LDA模型的科研合作推荐研究[J]. 情报理论与实践,2015,38(9):79-85.
[6]熊回香,杨雪萍,蒋武轩,等. 基于学术能力及合作关系网络的学者推荐研究[J]. 情报科学,2019,37(5):71-78.
[7]熊回香,顾佳云,代沁泉,等. 基于用户相似度与信任度的虚拟学术社区中学者推荐研究[J]. 情报科学,2022,40(2):74-81.
[8]董文慧,熊回香,杜瑾,等. 基于学者画像的科研合作者推荐研究[J]. 数据分析与知识发现,2022,6(10):20-34.
[9]杨梦婷,熊回香,肖兵,等. 基于动态特征的学者推荐研究[J]. 情报理论与实践,2022,45(4):120-127.
[10]王妞妞,熊回香,刘梦豪,等. 基于多维决策属性的科研合作者推荐研究[J]. 情报科学,2022,40(7):93-101.
[11]JIN H Y,ZHANG P C,DONG H,et al. Personalized scholar recommendation based on multi-demensional features[J]. Applied sciences,2021,11(18):8664.
[12]YUAN C,HE Y,LIN R,et al. Graph embedding for scholar recommendation in academic social networks[J]. Frountiers in physics,2021,768006.
[13]秦红武,赵猛,马秀琴,等. 基于学术水平聚类的科研合作者推荐模型[J]. 计算机工程与应用,2022,58(21):172-181.
[14]汪俊,岳峰,王刚,等. 科研社交网络中基于链接预测的专家推荐研究[J]. 情报杂志,2015,34(6):151-157.
[15]刘云枫,孙平,葛志远. 基于网络表示学习的作者合作推荐模型[J]. 情报科学,2020,38(2):75-80.
[16]张金柱,于文倩,刘菁婕,等. 基于网络表示学习的科研合作预测研究[J]. 情报学报,2018,37(2):132-139.
[17]褚叶祺,丁佳骏. 基于Louvain算法的作者合著网络社区划分研究[J]. 高技术通讯,2021,31(3):257-262.
[18]武森,卢丹,冯小东,等. 基于大规模复杂网络社区发现的科研合著网络分析[J]. 中国科技论文,2014,9(4):474-478.
[19]邱均平. 文献计量学(第二版)[M]. 北京:科学出版社,2019.
[20]熊回香,叶佳鑫,丁玲,等. 基于改进的h指数的学者评价研究[J]. 情报学报,2019,38(10):1022-1029.
[21]曲靖野,陈震,胡铁楠. 共词分析与LDA模型分析在文本主题挖掘中的比较研究[J]. 信息资源管理学报,2018,36(2):18-23.
[22]赵凯,王鸿源. LDA最优主题数选取方法研究:以CNKI文献为例[J]. 管理决策,2020,39(16):175-179.
[23]姜鑫. 社会网络分析方法在图书情报领域的应用研究[M]. 北京:知识产权出版社,2015.
[24]李纲,李岚凤,毛进,等. 作者合著网络中研究兴趣相似性实证研究[J].图书情报工作,2015,59(2):75-81.
[25]刘军. 整体网分析讲义——UCINET软件实用指南[M]. 上海:上海人民出版社,2009.
[26]熊回香,杨雪萍,蒋武轩,等. 科研社交网站中基于相似性趣的学者推荐研究[J]. 情报科学,2017,35(9):3-11.
[27]余传明,龚雨田,赵晓莉,等. 基于多特征融合的金融领域科研合作推荐研究[J]. 数据分析与知识发现,2017,1(8):39-47.
[28]张斌,马费成. 科学知识网络中的链路预测研究综述[J]. 中国图书馆学报,2015,41(3):99-113.
[29]张斌,李亚婷,戴怡清. 学科合作网络的链路挖掘与应用分析[J]. 情报理论与实践,2018,41(9):108-113.
[30]高广尚. 用户画像构建方法研究综述[J]. 数据分析与知识发现,2019,3(3):25-35.
[31]刘海鸥,孙晶晶,苏妍嫄,等. 国内外用户画像研究[J]. 情报理论与实践,2018,41(11):155-160.

备注/Memo

备注/Memo:
收稿日期:2022-11-25.
基金项目:江苏省高校哲学社会科学研究项目(2022SJYB1129)、国家社会科学基金项目(22BTQ023).
通讯作者:王大阜,硕士,馆员,研究方向:推荐系统、知识图谱. E-mail:wdf@cumt.edu.cn
更新日期/Last Update: 2023-09-15