[1]刘 丹,张建华,宋明亮.三角代数上Jordan同构的刻画[J].南京师大学报(自然科学版),2023,46(04):1-4.[doi:10.3969/j.issn.1001-4616.2023.04.001]
 Liu Dan,Zhang Jianhua,Song Mingliang.Characterizations of Jordan Isomorphisms of Triangular Algebras[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(04):1-4.[doi:10.3969/j.issn.1001-4616.2023.04.001]
点击复制

三角代数上Jordan同构的刻画()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年04期
页码:
1-4
栏目:
数学
出版日期:
2023-12-15

文章信息/Info

Title:
Characterizations of Jordan Isomorphisms of Triangular Algebras
文章编号:
1001-4616(2023)04-0001-04
作者:
刘 丹1张建华2宋明亮1
(1.江苏第二师范学院数学科学学院,江苏 南京 210013)
(2.陕西师范大学数学与统计学院,陕西 西安 710062)
Author(s):
Liu Dan1Zhang Jianhua2Song Mingliang1
(1.School of Mathematical Sciences,Jiangsu Second Normal University,Nanjing 210013,China)
(2.School of Mathematics and Statistics,Shaanxi Normal University,Xi'an 710062,China)
关键词:
三角代数Jordan同构零积
Keywords:
triangular algebra Jordan isomorphism zero product
分类号:
O177.1
DOI:
10.3969/j.issn.1001-4616.2023.04.001
文献标志码:
A
摘要:
设U=Tri(A,M,B)是三角代数,V是2-无挠含单位的代数. 本文证明了线性双射φ:U→V是Jordan同构的充要条件是φ保单位且下列条件之一成立:(1)φ(x。y)=φ(x)。φ(y),其中x,y∈U满足xy=0.(2)φ(x。y)=φ(x)。φ(y),其中x,y∈U满足x。y=0.(3)φ(x。y)=φ(x)。φ(y),其中x,y∈U满足xy=yx=0.
Abstract:
Let U=Tri(A,M,B)be a triangular algebra and let V be a unitial 2-torsion free algebra. It is shown that a linear bijection φ:U→V is Jordan isomorphism if and only if φ is unital and one of the following statements holds:(1)φ(x。y)=φ(x)。φ(y)for x,y∈U with xy=0;(2)φ(x。y)=φ(x)。φ(y)for x,y∈U with x。y=0;(3)φ(x。y)=φ(x)。φ(y)for x,y∈U with xy=yx=0.

参考文献/References:

[1]MOLNAR L,SEMRL P. Some linear preserver problems on upper triangular matrices[J]. Linear and multilinear algebra,1998,45(2-3):189-206.
[2]BEIDAR K I,BRESAR M,CHEBOTAR M A. Jordan isomorphisms of triangular matrix algebras over a connected commutative ring[J]. Linear algebra and its applications,2000,312(1-3):197-201.
[3]LU F. Jordan isomorphisms of nest algebras[J]. Proceedings of the American Mathematical Society,2002,131(1):147-154.
[4]WONG T L. Jordan isomorphisms of triangular rings[J]. Proceedings of the American Mathematical Society,2005,133(11):3381-3388.
[5]CRIST R L. Local automorphisms[J]. Proceedings of the American Mathematical Society,1999,128(5):1409-1414.
[6]LIU D,ZHANG J. Local Lie derivations of factor von Neumann algebras[J]. Linear algebra and its applications,2017,519(2):208-218.
[7]HADWIN D,LI J K. Local derivations and local automorphisms on some algebras[J]. Journal of operator theory,2008,60(1):29-44.
[8]KADISON R V. Local derivations[J]. Journal of algebra,1990,130(2):494-509.
[9]SEMRL P. Local automorphisms of standard operator algebras[J]. Journal of mathematical analysis and applications,2010,371(2):403-406.
[10]CHEBOTAR M A,KE W F,LEE P H,et al. Mappings preserving zero products[J]. Studia mathematica,2003,155(1):77-94.
[11]JI P,QI W. Characterizations of Lie derivations of triangular algebras[J]. Linear algebra and its applications,2011,435(5):1137-1146.
[12]LU F. Characterizations of derivations and Jordan derivations on Banach algebras[J]. Linear algebra and its applications,2009,430(8-9):2233-2239.
[13]QI X,CUI J,HOU J. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[J]. Linear algebra and its applications,2011,434(3):669-682.
[14]ZHANG X,ZHANG J. Characterizations of the Jordan isomorphisms of nest algebras[J]. Acta mathematic sinica(Chinese series),2013,56(4):553-560.
[15]ZhAO J,ZHU J. Jordan higher all-derivable points in triangular algebras[J]. Linear algebra and its applications,2012,436(9):3072-3086.
[16]FEI X,ZHANG J. Maps preserving projections on von neumann algebras[J]. Journal of Nanjing Normal University(natural science edition),2016,39(4):5-7,13.
[17]HOU J,JIAO M. Additive maps preserving Jordan zero-products on nest algebras[J]. Linear algebra and its applications,2008,429(1):190-208.

相似文献/References:

[1]费秀海,张建华.von Neumann代数上保持投影的映射[J].南京师大学报(自然科学版),2016,39(04):0.[doi:10.3969/j.issn.1001-4616.2016.04.002]
 Fei Xiuhai,Zhang Jianhua.Maps Preserving Projections on von Neumann Algebras[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(04):0.[doi:10.3969/j.issn.1001-4616.2016.04.002]
[2]费秀海,戴 磊,张海芳.三角代数上的非线性(m,n)-Lie中心化子[J].南京师大学报(自然科学版),2019,42(01):23.[doi:10.3969/j.issn.1001-4616.2019.01.005]
 Fei Xiuhai,Dai Lei,Zhang Haifang.Nonlinear(m,n)-Lie Centralizers on Triangular Algebras[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):23.[doi:10.3969/j.issn.1001-4616.2019.01.005]

备注/Memo

备注/Memo:
收稿日期:2022-02-18.
基金项目:国家自然科学基金项目(11901248).
通讯作者:刘丹,博士,讲师,研究方向:算子代数与算子理论. E-mail:ldyfusheng@126.com
更新日期/Last Update: 2023-12-15