[1]袁 园.路因子临界覆盖图存在的若干充分条件[J].南京师大学报(自然科学版),2023,46(04):11-16.[doi:10.3969/j.issn.1001-4616.2023.04.003]
 Yuan Yuan.The Sufficient Conditions for the Existence of Path-Factor Critical Covered Graphs[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(04):11-16.[doi:10.3969/j.issn.1001-4616.2023.04.003]
点击复制

路因子临界覆盖图存在的若干充分条件()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年04期
页码:
11-16
栏目:
数学
出版日期:
2023-12-15

文章信息/Info

Title:
The Sufficient Conditions for the Existence of Path-Factor Critical Covered Graphs
文章编号:
1001-4616(2023)04-0011-06
作者:
袁 园
(海南大学数学与统计学院,海南 海口 570228)
Author(s):
Yuan Yuan
(School of Mathematics and Statistics,Hainan University,Haikou 570228,China)
关键词:
联结数连通度路因子P≥t-因子P≥t-因子临界覆盖图
Keywords:
Binding number connectivity path factor P≥t-factor P≥t-factor-critical covered graph
分类号:
05C70; 05C38
DOI:
10.3969/j.issn.1001-4616.2023.04.003
文献标志码:
A
摘要:
设G是一个图,如果G的支撑子图F的每个分支都是一条路,则称F是路因子. P≥t-因子表示每个分支至少含有t个顶点的路因子. 对于任意e∈E(G),如果图G存在P≥t-因子包含边e,则称图G是P≥t-因子覆盖的. 对于图G的任意顶点子集S,|S|=k,如果G-S是P≥t-因子覆盖的,则称G是P≥t-因子临界覆盖的. 本文考虑P≥t-因子临界覆盖图存在的几个充分条件,且通过给出极图说明在某种意义下给出的界是最好的.
Abstract:
Let G be a graph. A spanning subgraph F of G is called a path factor if each component of F is a path. Denote by P≥t-factor the path factor each component of which admits at least t vertices. We say that G is P≥t-factor covered if G has a P≥t-factor containing e for any e∈E(G). For arbitrary SV(G) with |S|=k,if G-S is P≥t-factor covered,then we say G is P≥t-factor-critical covered. In this paper,we present sufficient conditions for graphs to be P≥t-factor-critical covered and construct counterexamples to show that the bounds are best possible in some sense.

参考文献/References:

[1]BONDY J A,MURTY U S R. Graph Theory[M]. Graduate Texts in Mathematics,London:Springer-Verlag,2008.
[2]ZHOU S Z,SUN Z R. Some existence theorems on path factors with given properties in graphs[J]. Acta mathematica sinica,English series,2020,36(8):917-928.
[3]AKIYAMA J,AVIS D,ERA H. On a{1,2}-factor of a graph[J]. Tru mathematics,1980,16:97-102.
[4]KANEKO A. A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two[J]. Journal of combinatorial theory,series B,2003,88:195-218.
[5]ZHANG H P,ZHOU S. Characterizations for P≥2-factor and P≥3-factor covered graphs[J]. Discrete mathematics,2009,309:2067-2076.
[6]ZHOU S Z. Binding numbers and restricted fractional(g,f)-factors in graphs[J]. Discrete applied mathematics,2021,305:350-356.
[7]ZHOU S Z,BIAN Q X,PAN Q R. Path factors in subgraphs[J]. Discrete applied mathematics,2022,319:183-191.
[8]ZHOU S Z,LIU H X,XU Y. A note on fractional ID-[a,b]-factor-critical covered graphs[J]. Discrete applied mathematics,2022,319:511-516.
[9]ZHOU S Z,WU J C,BIAN Q X. On path-factor critical deleted(or covered)graphs[J]. Aequationes mathematicae,2022,96:795-802.
[10]GAO W,WANG W F. Tight binding number bound for P]-factor-critical covered graphs[J]. Discrete applied mathematics,2022,319:511-516.
[9]ZHOU S Z,WU J C,BIAN Q X. On path-factor critical deleted(or covered)graphs[J]. Aequationes mathematicae,2022,96:795-802.
[10]GAO W,WANG W F. Tight binding number bound for b>≥3-factor uniform graphs[J]. Information processing letters,2021,172,106162.

备注/Memo

备注/Memo:
收稿日期:2023-04-06.
基金项目:海南省自然科学基金青年基金项目(120QN176)、海南大学科研启动基金项目(KYQD(ZR)19101).
通讯作者:袁园,博士,讲师,研究方向:图论. E-mail:kuailenanshi@126.com
更新日期/Last Update: 2023-12-15