[1]刘锦涛,贾 哲.带非线性扩散的趋化-趋触模型解的大时间行为[J].南京师大学报(自然科学版),2023,46(04):17-20.[doi:10.3969/j.issn.1001-4616.2023.04.004]
 Liu Jintao,Jia Zhe.Large Time Behavior to a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(04):17-20.[doi:10.3969/j.issn.1001-4616.2023.04.004]
点击复制

带非线性扩散的趋化-趋触模型解的大时间行为()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年04期
页码:
17-20
栏目:
数学
出版日期:
2023-12-15

文章信息/Info

Title:
Large Time Behavior to a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion
文章编号:
1001-4616(2023)04-0017-04
作者:
刘锦涛贾 哲
(临沂大学数学与统计学院,山东 临沂 276005)
Author(s):
Liu JintaoJia Zhe
(School of Mathematics and Statistics,Linyi University,Linyi 276005,China)
关键词:
趋化-趋触非线性扩散大时间行为能量泛函
Keywords:
chemotaxis-haptotaxis nonlinear diffusion large time behavior energy functional
分类号:
O175.26
DOI:
10.3969/j.issn.1001-4616.2023.04.004
文献标志码:
A
摘要:
研究带齐次Neumann边界条件的趋化-趋触模型:

其中ΩR3是带光滑边界的有界域,通过构造合适的能量泛函得当0<m≤1,并且μ充分大时,系统的解(u,v,w)将衰减到常数稳态解(a/μ,a/μ,0).
Abstract:
This paper deals with the following chemotaxis-haptotaxis model

under homogenous Neumann boundary condition in a bounded domain ΩR3. It is shown that when 0<m≤1,for appropriately large μ,the corresponding solution(u,v,w)goes to the steady state (a/μ,a/μ,0) by constructing an appropriate energy functional.

参考文献/References:

[1]CHAPLAIN M,LOLAS G. Mathematical modelling of cancer invasion of tissue:dynamic heterogeneity[J]. Networks and heterogen media,2016(1):399-439.
[2]ZHENG J,KE Y. Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in mensions[J]. Journal of differential equations,2019,266:1969-2018.
[3]XU H,ZHANG L,JIN C. Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion[J]. Nonlinear analysis:real world applications,2019,46:238-256.
[4]JIA Z,YANG Z D. Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion[J]. Applied mathematics letters,2020,103:106192.
[5]JIA Z,YANG Z D. Global boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion and signal production[J]. Acta mathematic scientia,2021,41A(5):1382-1395.
[6]JIN C. Large time behavior of solutions to a chemotaxis model with porous medium diffusion[J]. Journal of mathematical analysis and applications,2019,478:195-211.
[7]TAO Y,WINKLER M. Large time behavior in a multidimensional chemotaxis-hapotaxis model with slow signal diffusion[J]. SIAM journal on mathematical analysis,2015,47:4229-4250.
[8]TAO Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system[J]. arXiv:1407.7382,2014.
[9]JIN C. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion[J].Discrete and continuous dynamical systems,2018,23(4):1675-1688.
[10]LI Y,LANKEIT J. Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion[J]. Nonlinearity,2016,29:1564-1595.

备注/Memo

备注/Memo:
收稿日期:2023-04-02.
基金项目:国家自然科学基金项目(12301251、12271232)、山东省自然科学基金项目(ZR2021QA038)、临沂大学科研启动基金项目(LYDX2020BS014).
通讯作者:贾哲,博士,讲师,研究方向:偏微分方程及其应用. E-mail:jiazhe@lyu.edu.cn
更新日期/Last Update: 2023-12-15