参考文献/References:
[1]DAFERMOS S. Traffic equilibrium and variational inequalities[J]. Transportation science,1980,14(1):42-54.
[2]BERTSEKAS D P,GAFNI E M. Projection methods for variational inequalities with application to the traffic assignment problem[J]. Mathematical programming study,1982,17(16):139-159.
[3]NAGURNEY A. Network Economics:a variational inequality approach[M]. New York:Kluwer Academic Publishers,1993.
[4]FACCHINEI F,PANG J S. Finite-dimensional variational inequalities and complementarity problems[M]. Berlin:Springer Verlag,2003.
[5]HAN D R,SUN W Y. A new modified Goldstein-Levitin-Polyak projection method for variational inequality problems[J]. Computers and mathematics with applications,2004,47(12):1817-1825.
[6]HAN D R,HE B S. A new accuracy criterion for approximate proximal point algorithms[J]. Journal of mathematical analysis and applications,2001,263(2):343-354.
[7]HAN D R,XU W,YANG H. An operator splitting method for variational inequalities with partially unknown mappings[J]. Numerische mathematik,2008,111(2):207-237.
[8]WARDROP J G. Discussion:Some theoretical aspects of road traffic research[J]. Proceedings of the institution of civil engineers,part II,1952,1:325-378.
[9]YANG H,XU W,HE B S. Road pricing for congestion control with unknown demand and cost functions[J]. Transportation research part C:emerging technologies,2010,18(2):157-175.
[10]HAN D R,XU W,YANG H. Solving a class of variational inequalities with inexact oracle operators[J]. Mathematical methods of operations research,2010,71(3):427-452.
[11]GE Z L,HAN D R,NI Q,et al. An operator splitting method for monotone variational inequalities with a new perturbation strategy[J]. Optimization letters,2018,12(1):103-122.
[12]DONG X M,CAI X J,HAN D R,et al. Solving a class of variational inequality problems with a new inexact strategy[J]. Asia-pacific journal of operational research,2020,37(1):20.
[13]KOU X P,LI S J. On non-ergodic convergence rate of the operator splitting method for a class of variational inequalities[J]. Optimization letters,2017,11(1):71-80.
[14]葛志利,蔡邢菊,张欣. 算子分裂法求解一类变分不等式问题的收敛率分析[J]. 南京师大学报(自然科学版),2020,43(1):5-12.
[15]HE B S,YUAN X M. On the O(1/n)Convergence rate of the Douglas-Rachford alternating direction method[J]. SIAM journal on numerical analysis,2012,50(2):700-709.
[16]HE B S,YUAN X M. On the convergence rate of Douglas-Rachford operator splitting method[J]. Mathematical programming,2015,153(2):715-722.
[17]TSENG P. Error bounds and superlinear convergence analysis of some newton-type methods in optimization[M]. Boston,MA:Springer,2000.
[18]DENG W,YIN W T. On the global and linear convergence of the generalized alternating direction method of multipliers[J]. Journal of scientific computing,2016,66(3):889-916.
[19]PENG J W,ZHANG X Q. Linear convergence rate of the generalized alternating direction method of multipliers for a class of convex minimization problems[J]. Journal of nonlinear and convex analysis,2022,23(8):1559-1575.
[20]JIA Z H,GAO X,CAI X J,et al. Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems[J]. Journal of optimization theory and applications,2021,188(1):1-25.