[1]葛志利,谭志聪,徐莹莹,等.一类带线性约束的变分不等式的预测校正方法的收敛率分析[J].南京师大学报(自然科学版),2024,(03):1-7.[doi:10.3969/j.issn.1001-4616.2024.03.001]
 Ge Zhili,Tan Zhicong,Xu Yingying,et al.Convergence Rate Analysis of Prediction Correction Methods for a Class of Variational Inequalities with Linear Constraints[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(03):1-7.[doi:10.3969/j.issn.1001-4616.2024.03.001]
点击复制

一类带线性约束的变分不等式的预测校正方法的收敛率分析()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年03期
页码:
1-7
栏目:
数学
出版日期:
2024-09-15

文章信息/Info

Title:
Convergence Rate Analysis of Prediction Correction Methods for a Class of Variational Inequalities with Linear Constraints
文章编号:
1001-4616(2024)03-0001-07
作者:
葛志利1谭志聪1徐莹莹2张 欣3
(1.南京特殊教育师范学院数学与信息科学学院,江苏 南京 210038)
(2.东南大学信息科学与工程学院,江苏 南京 211189)
(3.宿迁学院文理学院,江苏 宿迁 223800)
Author(s):
Ge Zhili1Tan Zhicong1Xu Yingying2Zhang Xin3
(1.School of Mathematics and Information Science,Nanjing Normal University of Special Education,Nanjing 210048,China)
(2.School of Information Science and Engineering,Southeast University,Nanjing 211189,China)
(3.School of Arts and Science,Suqian University,Suqian 223800,China)
关键词:
线性约束变分不等式全局线性收敛性预测校正方法
Keywords:
linear constraintsvariational inequalitiesglobal linear convergenceprediction correction method
分类号:
O221.4
DOI:
10.3969/j.issn.1001-4616.2024.03.001
文献标志码:
A
摘要:
考虑一类带线性约束的变分不等式问题:寻找x*∈Ω满足F(x*)T(x-x*)≥0,x∈Ω,其中Ω={x∈Rn|Ax≤b,x∈K},A∈Rm×n,b∈Rm,K是Rn上的一个简单的非空闭凸子集,F是Rn到Rn的连续未知算子且满足强单调. 对此类问题,本文研究了一种新的预测校正方法. 根据已有的收敛性结果,利用误差界条件进一步分析了该方法的线性收敛性. 最后,通过交通均衡问题中两个带线性约束例子的数值结果展示了算法的有效性.
Abstract:
This paper considers a class of variational inequalities with linear constraints:finding x*∈Ω,such that F(x*)T(x-x*)≥0,x∈Ω,where Ω={x∈Rn|Ax≤b,x∈K},A∈Rm×n,b∈Rm,K is a simple nonempty closed convex subset of Rn,F is a continuous unknown mapping from Rn to Rn,and satisfies the strong monotonicity. We study a new prediction correction method for this class of problems. Based on the previous convergence results,we further analyze the linear convergence by using the error bound condition. Finally,two numerical results in traffic equilibrium problems with linear constraints demonstrate the effectiveness of the algorithm.

参考文献/References:

[1]DAFERMOS S. Traffic equilibrium and variational inequalities[J]. Transportation science,1980,14(1):42-54.
[2]BERTSEKAS D P,GAFNI E M. Projection methods for variational inequalities with application to the traffic assignment problem[J]. Mathematical programming study,1982,17(16):139-159.
[3]NAGURNEY A. Network Economics:a variational inequality approach[M]. New York:Kluwer Academic Publishers,1993.
[4]FACCHINEI F,PANG J S. Finite-dimensional variational inequalities and complementarity problems[M]. Berlin:Springer Verlag,2003.
[5]HAN D R,SUN W Y. A new modified Goldstein-Levitin-Polyak projection method for variational inequality problems[J]. Computers and mathematics with applications,2004,47(12):1817-1825.
[6]HAN D R,HE B S. A new accuracy criterion for approximate proximal point algorithms[J]. Journal of mathematical analysis and applications,2001,263(2):343-354.
[7]HAN D R,XU W,YANG H. An operator splitting method for variational inequalities with partially unknown mappings[J]. Numerische mathematik,2008,111(2):207-237.
[8]WARDROP J G. Discussion:Some theoretical aspects of road traffic research[J]. Proceedings of the institution of civil engineers,part II,1952,1:325-378.
[9]YANG H,XU W,HE B S. Road pricing for congestion control with unknown demand and cost functions[J]. Transportation research part C:emerging technologies,2010,18(2):157-175.
[10]HAN D R,XU W,YANG H. Solving a class of variational inequalities with inexact oracle operators[J]. Mathematical methods of operations research,2010,71(3):427-452.
[11]GE Z L,HAN D R,NI Q,et al. An operator splitting method for monotone variational inequalities with a new perturbation strategy[J]. Optimization letters,2018,12(1):103-122.
[12]DONG X M,CAI X J,HAN D R,et al. Solving a class of variational inequality problems with a new inexact strategy[J]. Asia-pacific journal of operational research,2020,37(1):20.
[13]KOU X P,LI S J. On non-ergodic convergence rate of the operator splitting method for a class of variational inequalities[J]. Optimization letters,2017,11(1):71-80.
[14]葛志利,蔡邢菊,张欣. 算子分裂法求解一类变分不等式问题的收敛率分析[J]. 南京师大学报(自然科学版),2020,43(1):5-12.
[15]HE B S,YUAN X M. On the O(1/n)Convergence rate of the Douglas-Rachford alternating direction method[J]. SIAM journal on numerical analysis,2012,50(2):700-709.
[16]HE B S,YUAN X M. On the convergence rate of Douglas-Rachford operator splitting method[J]. Mathematical programming,2015,153(2):715-722.
[17]TSENG P. Error bounds and superlinear convergence analysis of some newton-type methods in optimization[M]. Boston,MA:Springer,2000.
[18]DENG W,YIN W T. On the global and linear convergence of the generalized alternating direction method of multipliers[J]. Journal of scientific computing,2016,66(3):889-916.
[19]PENG J W,ZHANG X Q. Linear convergence rate of the generalized alternating direction method of multipliers for a class of convex minimization problems[J]. Journal of nonlinear and convex analysis,2022,23(8):1559-1575.
[20]JIA Z H,GAO X,CAI X J,et al. Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems[J]. Journal of optimization theory and applications,2021,188(1):1-25.

相似文献/References:

[1]孙黎明.一种求解线性规划的投影动态方法(英文)[J].南京师大学报(自然科学版),2015,38(04):8.
 Sun Liming.A Projective Dynamic Method for SolvingLinear Programming[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):8.

备注/Memo

备注/Memo:
收稿日期:2023-06-03.
基金项目:国家自然科学基金项目(120081)、江苏省青蓝工程项目、宿迁市科技计划资助项目(M202206)、宿迁学院高级别纵向科研培育项目.
通讯作者:徐莹莹,博士研究生,研究方向:移动网络通信优化. E-mail:vivi_xuyingying@163.com
更新日期/Last Update: 2024-09-15