参考文献/References:
[1]AGHI M,MARTUZA R L. Oncolytic viral therapies—the clinical experience[J]. Oncogene,2005,24(52):7802-7816.
[2]马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京:科学出版社,2004.
[3]DUAN X,TAN Y S. Global dynamics of an age-structured virus model with saturation effects[J]. Mathematical methods in the applied sciences,2016,40(6):1851-1864.
[4]KWON H D,LEE J,YOON M. An age-structured model with immune responses of hiv infection:modeling and optimal control approach[J]. Discrete and continuous dynamical systems-series b,2014,19(1):153-172.
[5]XIE Z Z,LIU X. Global dynamics in an age-structured hiv model with humoral immunity[J]. International journal of biomathematics,2021,14(6):1793-5245.
[6]刘艳娜. 年龄结构传染病模型的动力学分析[D]. 西安:西安理工大学,2021.
[7]KHALID H,YU Y. Global dynamics of an age-structured viral infection model with general incidence function and absorption[J]. International journal of biomathematicsvol,2018,11(5):65-83.
[8]JENNER A L. Mathematical modelling of the interaction between cancer cells and an oncolytic virus:insights into the effects of treatment protocols[J]. Bulletin of mathematical biology,2018,80(6):1615-1629.
[9]JENNER A L,Kim P S,Frascoli F. Oncolytic virotherapy for tumours following a gompertz growth law[J]. Journal of theoretical biology,2021,48(10):129-140.
[10]ANELONE J N. Oncolytic virus therapy benefits from control theory[J]. Royal society open science,2020,7(7):73-94.
[11]HALE J K. Asymptotic behavior of dissipative systems[M]. New York:American Mathematical Society,1987.
[12]马知恩,周义仓,李承治. 常微分方程定性与稳定性方法[M]. 北京:科学出版社,2015.