[1]沈文国.一般有界区域上高维变权p-Laplacian问题保号解的存在性[J].南京师大学报(自然科学版),2024,(03):15-20.[doi:10.3969/j.issn.1001-4616.2024.03.003]
 Shen Wenguo.Existence of One-sign Solutions to the High-Dimensional Sign-Changing Weight p-Laplacian on General Domain[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(03):15-20.[doi:10.3969/j.issn.1001-4616.2024.03.003]
点击复制

一般有界区域上高维变权p-Laplacian问题保号解的存在性()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年03期
页码:
15-20
栏目:
数学
出版日期:
2024-09-15

文章信息/Info

Title:
Existence of One-sign Solutions to the High-Dimensional Sign-Changing Weight p-Laplacian on General Domain
文章编号:
1001-4616(2024)03-0015-06
作者:
沈文国
(广东科技学院通识教育学院,广东 东莞 523083)
Author(s):
Shen Wenguo
(College of General Education,Guangdong University of Science and Technology,Dongguan 523083,China)
关键词:
单侧全局分歧一般区域上高维变权p-Laplacian方程保号解
Keywords:
unilateral global bifurcationhigh-dimensional sign-changing weight p-Laplacian problems on general domainone-sign solutions
分类号:
O175.8
DOI:
10.3969/j.issn.1001-4616.2024.03.003
文献标志码:
A
摘要:
Abstract:

参考文献/References:

[1]RABINOWITZ P H. Some aspects of nonlinear eigenvalue problems[J]. Rocky mountain journal of mathematics,1973(3):161-202.
[2]DEL PINO M,MANASEVICH R. Global bifurcation from the eigenvalues of the p-Laplacian[J]. Journal of differential equations,1991(92):226-251.
[3]DANCER E N. On the structure of solutions of non-linear eigenvalue problems[J]. Indiana University mathematics journal,1974(23):1069-1076.
[4]DRABEK P Y. Huang Bifurcation problems for the p-Laplacian in RN[J]. Transactions of the American Mathemicatical Society,1997(349):171-188.
[5]GIRG P,TAKAC P. Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems[J]. Annales de L institut Henri poincare-analyse non lineaire,2008(9):275-327.
[6]SCHMITT K,THOMPSON R. Nonlinear analysis and differential equations:an introduction,university of utah lecture notes[M]. Salt Lake City:University of Utah Press,2000.
[7]DAI G,MA R,XU J. Global bifurcation and nodal solutions of N-dimensional p-Laplacian in unit ball[J]. Applicable analysis,2013,92(7):1345-1356.
[8]DAI G,MA R. Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J]. Journal of differential equations,2012,252:2448-2468.
[9]DAI G,HAN X,MA R. Unilateral global bifurcation and nodal solutions for the p-Laplacian with sign-changing weight[J]. Complex variable and elliptic equations,2014,59(6):847-862.
[10]ALLEGRETTO W,HUANG Y X. Eigenvalues of the indefinite weight p-Laplacian in weighted RN spaces[J]. Funkc ekvac,1995(38):233-242.
[11]Ma R,An Y. Global structure of positive solutions for nonlocal boundary value problems involving integral conditions[J]. Nonlinear analysis-theory methods & applications,2009(71):4364-4376.
[12]Rabinowitz P H. On bifurcation from infinity[J]. Journal of differential equations,1973(14):462-475.
[13]Ambrosetti A,Calahorrano R M,Dobarro F R. Global branching for discontinuous problems[J]. Commentationes mathematicae universitatis carolinae,1990(31):213-222.

备注/Memo

备注/Memo:
收稿日期:2022-10-08.
基金项目:国家自然科学基金项目(11561038).
通讯作者:沈文国,博士,教授,研究领域:非线性泛函微分方程与分歧理论. E-mail:shenwg369@163.com
更新日期/Last Update: 2024-09-15