参考文献/References:
[1]李勇,黄志球,房丙午,等. 代价敏感分类的软件缺陷预测方法[J]. 计算机科学与探索,2014,8(12):1442-1451.
[2]李勇,黄志球,王勇,等. 数据驱动的软件缺陷预测研究综述[J]. 电子学报,2017,45(4):982-988.
[3]刘文英,林亚林,李克文,等. 一种软件缺陷不平衡数据分类新方法[J]. 山东科技大学学报(自然科学版),2021,40(2):84-94.
[4]曲豫宾,陈翔,李龙,等. 可缓解类重叠问题的跨版本软件缺陷预测方法[J]. 吉林大学学报(理学版),2021,59(2):372-378.
[5]盖金晶,郑尚,于化龙,等. 一种跨项目缺陷预测的源项目训练数据选择方法[J]. 南京师大学报(自然科学版),2022,45(1):110-117.
[6]倪超,陈翔,刘望舒,等. 基于特征迁移和实例迁移的跨项目缺陷预测方法[J]. 软件学报,2019,30(5):1308-1329.
[7]李勇,黄志球,王勇,等. 基于多源数据的跨项目软件缺陷预测[J]. 吉林大学学报(工学版),2016,46(6):2034-2041.
[8]CHEN X,ZHANG D,CUI Z Q,et al. DP-share:privacy-preserving software defect prediction model sharing through differential privacy[J]. Journal of computer science and technology,2019,34(5):1020-1038.
[9]CHEN Y,QIN X,WANG J,et al. FedHealth:a federated transfer learning framework for wearable healthcare[J]. IEEE intelligent systems,2020,35(4):83-93.
[10]CHEN Y,LU W,WANG J,et al. Federated learning with adaptive batchnorm for personalized healthcare[J/OL]. arXiv Preprint arXiv:2112.00734,2021.
[11]ZHANG W,LI X. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy[J]. IEEE/ASME transactions on mechatronics,2022,27(1):430-439.
[12]WANG A,ZHANG Y,YAN Y,et al. Heterogeneous defect prediction based on federated transfer learning via knowledge distillation[J]. IEEE access,2021,9:29530-29540.
[13]SHARMA S,CHAOPING X,LIU Y,et al. Secure and efficient federated transfer learning[C]//2019 IEEE International Conference on Big Data. New York:IEEE,2019.
[14]JU C,GAO D,MARE R,et al. Federated transfer learning for EEG signal classification[C]//IEEE Engineering in Medicine and Biology Society Conference Proceedings. Motreal,Canada:IEEE,2020.
[15]孔秀平,陆林. 隐私保护下的车辆轨迹联邦嵌入学习与聚类[J]. 南京师范大学学报(工程技术版),2022,22(2):80-86.
[16]TANG S,HUANG S,ZHENG C,et al. A novel cross-project software defect prediction algorithm based on transfer learning[J]. Tsinghua science and technology,2022,27(1):41-57.
[17]WU X,ZHANG Y,SHI M,et al. An adaptive federated learning scheme with differential privacy preserving[J]. Future generation computer systems,2022,127:362-372.
[18]叶青青,孟小峰,朱敏杰,等. 本地化差分隐私研究综述[J]. 软件学报,2018,29(7):25.
[19]GF A,RS B. On the behavioral implications of differential privacy[J]. Theoretical computer science,2020,841:84-93.
[20]LI H,HYB C,LANG L,et al. MHAT:an efficient model-heterogenous aggregation training scheme for federated learning[J]. Information sciences,2021.
[21]LI T,SAHU A K,TALWALKAR A,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal processing magazine,2020,37(3):50-60.
[22]ZHANG W,LI X,MA H,et al. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision[J]. Knowledge-based systems,2021,213(1):106679.
[23]张泽辉,富瑶,高铁杠. 支持数据隐私保护的联邦深度神经网络模型研究[J]. 自动化学报,2022,48(5):1273-1284.
[24]杨庚,王周生. 联邦学习中的隐私保护研究进展[J]. 南京邮电大学学报(自然科学版),2020,40(5):204-214.
[25]RODRIGUEZ D,HERRAIZ I,HARRISON R. On software engineering repositories and their open problems[C]//First International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering(RAISE'12). New York:IEEE,2012.
[26]FANG H,QIAN Q,CHEN M L,et al. Privacy preserving machine learning with homomorphic encryption and federated learning[J]. Future internet,2021,13.
[27]贾峰,李世豪,沈建军,等. 采用深度迁移学习与自适应加权的滚动轴承故障诊断[J]. 西安交通大学学报,2022,56(8):1-10.
[28]MG A,KE P A,YU X A,et al. Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition-ScienceDirect[J]. Neural networks,2020,125:131-141.