参考文献/References:
[1]杨雅萍,姜侯,孙九林. 科学数据共享实践:以国家地球系统科学数据中心为例[J]. 地球信息科学学报,2020,22(6):1358-1369.
[2]FAN L,WANG L. Secure sharing of spatio-temporal data through name-based access control[C]//Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). Vancouver,Canada:IEEE,2021:1-7.
[3]ZHAO T T,LIU W Z,DI X L,et al. Research on the way of sharing geographic information data in disaster management[J]. The international archives of the photogrammetry,remote sensing and spatial information sciences,2022,48(3):103-109.
[4]MCMAHAN B,MOORE E,RAMAGE D,et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale,USA:PMLR,2017:1273-1282.
[5]YANG Q,LIU Y,CHEN T,et al. Federated machine learning:concept and applications[J]. ACM transactions on intelligent systems and technology,2019,10(2):1-19.
[6]KAIROUZ P,MCMAHAN B,AVENT B,et al. Advances and open problems in federated learning[J]. Foundations and trends in machine learning,2021,14(1):1-121.
[7]GRASER A,HEISTRACHER C,PRUCKOVSKAJA V. On the role of spatial data science for federated learning[C]//Proceedings of the Spatial Data Science Symposium 2022. Virtual. USA:eScholarship Publishing,2022:1-8.
[8]ASHISH K S. Advancing location privacy in urban networks:a hybrid approach leveraging federated learning and geospatial semantics[J]. International journal of information and cybersecurity,2023,7(1):58-72.
[9]CHUNG P,TAEKYOON C,TAESAN K,et al. FedGeo:Privacy-preserving user next location prediction with federated learning[C]//Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems. Hamburg,Germany:ACM,2023:13-16.
[10]蒋伟进,韩裕清,吴玉庭,等. 基于边缘计算的环境监测自适应联邦学习算法[J]. 电子学报,2023,51(11):3061-3069.
[11]JONAS G,HARTMUT B,HANNAH D,et al. Inverting gradients-how easy is it to break privacy in federated learning?[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Virtual. USA:Curran Associates Inc,2020:16937-16947.
[12]ZHANG Y H,JIA R X,PEI H Z,et al. The secret revealer:generative model-inversion attacks against deep neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle,USA:IEEE,2020:250-258.
[13]JOSHUA C Z,ATUL S,Elkordy A,et al. LOKI:large-scale data reconstruction attack against federated learning through model manipulation[C]//Proceedings of the 2024 IEEE Symposium on Security and Privacy(SP). San Francisco,USA:IEEE,2023:1287-1305.
[14]KANG H Y,JI Y R,ZHANG S X. Enhanced privacy preserving for social networks relational data based on personalized differential privacy[J]. Chinese journal of electronics,2022,31(4):741-751.
[15]WARNAT-HERRESTHAL S,SCHULTZE H,SHASTRY K L,et al. Swarm learning for decentralized and confidential clinical machine learning[J]. Nature,2021,594(7862):265-270.
[16]DWORK C,ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and trends in theoretical computer science,2013,9(3):211-407.
[17]JOSEPH F,WANG W,CHEN H N,et al. Differential privacy in health research:a scoping review[J]. Journal of the American medical informatics association,2021,28(10):2269-2276.
[18]WANG Y L,WANG Q,ZHAO L C,et al. Differential privacy in deep learning:privacy and beyond[J]. Future generation computer systems,2023,148:408-424.
[19]康海燕,王骁识. 基于数据特征相关性和自适应差分隐私的深度学习方法研究[J]. 电子学报,2024,52(6):1963-1976.
[20]MICALI S,RABIN M,VADHAN S. Verifiable random functions[C]//Proceedings of the 40th Annual Symposium on Foundations of Computer Science. New York,USA:IEEE,1999:120-130.