[1]甘文珍,史一欢.一类具扩散的SIRS传染病模型解的渐近性质[J].南京师范大学学报(自然科学版),2009,32(03):25-30.
 Gan Wenzhen,Shi Yihuan.Asymptotic Properties of Solutions to a SIRS Epidemic Model With Diffusion[J].Journal of Nanjing Normal University(Natural Science Edition),2009,32(03):25-30.
点击复制

一类具扩散的SIRS传染病模型解的渐近性质()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第32卷
期数:
2009年03期
页码:
25-30
栏目:
数学
出版日期:
2009-09-30

文章信息/Info

Title:
Asymptotic Properties of Solutions to a SIRS Epidemic Model With Diffusion
作者:
甘文珍1 史一欢2
1. 江苏技术师范学院数理学院, 江苏常州213001
 2. 南京师范大学生命科学学院, 江苏南京210097
Author(s):
Gan Wenzhen 1Shi Yihuan 2
1. School of Mathematics and Physics,Jiangsu Teachers University of Technology,Changzhou 213001,China
关键词:
非线性发生率 暂时免疫力 时滞 反应扩散系统 渐近性质
Keywords:
non linear inc ident ra te temporary immunity tim e delay reaction diffusion system asym pto tic properties
分类号:
O175.26
摘要:
研究了一类具有非线性发生率的SIRS传染病模型的弱耦合反应扩散方程组.利用线性化和特征值的方法,讨论了无病平衡点和染病平衡点的局部稳定性,利用Liapunov函数的方法给出了无病平衡点渐近稳定的充分条件.结果表明,在小初值条件下,当接触率小的时候,无病平衡点是渐近稳定的.
Abstract:
The weakly coupled reaction-diffusion system describ ing a SIRS ep idem icm ode lw ith nonlinear inc ident rate is investigated. The loca l asym pto tic stab ilities of equilibr ium s are g iven by lineariza tion and e igenvalue. The asympto tic stabilities o f d isease- free equ ilibrium is investig ated using them e thod of Liapunov functions. Our resu lts show tha t the d isease-free equ ilibrium is asym ptotically stable if the contac t rate is sm a ll and the initial va lues are sm all.

参考文献/References:

[ 1] KermackW O, M ckendr ick A G. Contributions to the m athema tica l theo ry of ep idem ics[ J] . Proc Roy Soc, 1927, A115:700-721.
[ 2] M ena-Lo rca J, H ethco teH W. Dynam ic mode ls o f in fec tious d iseases as regu latiors of popu lation sizes[ J] . JM ath B io,l1992, 30( 7): 693-716.
[ 3] Ande rson R M, M ayR. In fec tious Diseases o fH um en: Dynam ics and Control[M ]. Oxford: Ox ford Un iv ers ity Press, 1991:50-86.
[ 4] LiuW M, Lev ins S A, Lw asa Y. Influence of nonlinear inc idence rate upon the behav ior o f SIRS ep idem io log ical m ode ls[ J] . JM ath B io ,l 1986, 23( 2): 187-204.
[ 5] Ruan S G, W angW D. Dynam ica l behav ior o f an ep idem icm ode lw ith a non linear inc ident ra te[ J]. J D iff Equs, 2003, 188( 1): 135-163.
[ 6] Yu liy aN, Kyrychko, Konstantin Blyuss B. G lobal prope rties o f a de layed SIR m ode lw ith temporary imm un ity and non linearinc iden t rate[ J]. Non linear Ana ly sis: RWA, 2005, 6( 3): 495-507.
[ 7] Lady zenska ja O A, So lonn ikovV A, Ura l. ceva N N. Linear and quas ilinear equa tions o f parabolic type[ J]. Prov idence,R I: Am erM ath Soc, 1968: 105-219.
[ 8] Pao C V. Nonlinear Pa rabo lic and E llip tic Equations[M ]. New York: Plenum Press, 1992: 96-98.
[ 9] Pang P Y H, W angM X. Strategy and stationary pa ttern in a three- spec ies preda to r-preym ode l[ J]. J Diff Equ, 2004, 200( 2): 245-273.
[ 10] Wu J H. Theory and Applica tions o f Partia l Functiona-l Differential Equations, App liedM athem atica l Sc ience [M ] . NewYork: Springer-Verlag, 1996: 71-72.
[ 11] 王明新. 非线性抛物方程[M ]. 北京: 科学出版社, 1993: 121-122.
[ 12] B rown K J, Dunne P C, Gardne rR A. A sem ilinear pa rabo lic system ar ising in the theory of supe rconductiv ity[ J] . J D iffEqu, 1981, 40( 2): 232-252.
[ 13] 许飞, 侯燕, 林支桂. 带时滞的具有阶段结构的捕食抛物型方程组[ J]. 数学学报, 2005, 48( 6): 1 121-1 130.

相似文献/References:

[1]方玲玲,齐龙兴.一类SEIRS模型稳定性分析(英文)[J].南京师范大学学报(自然科学版),2013,36(03):21.
 Fang Lingling,Qi Longxing.The Stability Analysis of an SEIRS Model[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):21.

备注/Memo

备注/Memo:
基金项目: 江苏省教育厅自然科学基金( BK2006064 )资助项目.
通讯联系人: 甘文珍, 硕士, 讲师, 研究方向: 偏微分方程. E-m ail:ganw enzhen@ yahoo. com. cn
更新日期/Last Update: 2013-04-23