[1]谭远顺,徐晓曼.一类具脉冲控制策略捕食——食饵模型的持久性(英文)[J].南京师范大学学报(自然科学版),2012,35(03):1-5.
 Tan Yuanshun,Xu Xiaoman.Permanence of a Predator-Prey Model With Impulsive Control Strategy[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):1-5.
点击复制

一类具脉冲控制策略捕食——食饵模型的持久性(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年03期
页码:
1-5
栏目:
数学
出版日期:
2012-09-20

文章信息/Info

Title:
Permanence of a Predator-Prey Model With Impulsive Control Strategy
作者:
谭远顺;徐晓曼;
重庆交通大学理学院,重庆,4 00074
Author(s):
Tan YuanshunXu Xiaoman
School of Science,Chongqing Jiaotong University,Chongqing 400074,China
关键词:
捕食———食饵系统持久脉冲综合害虫控制
Keywords:
predator-prey systempermanenceimpulsiveIPM
分类号:
O175
摘要:
本文考虑了一类脉冲捕食——食饵模型的害虫综合控制策略,应用定性分析方法,小摄动理论和比较定理,得到当脉冲周期大于某一阈值时,系统是持久.
Abstract:
In the present paper,we investigate an impulsive predator-prey model of integrated pest management ( IPM) strategy. With the help of qualitative analysis method,small amplitude perturbation skills and comparison theorem we show that when the impulsive period is larger than some critical value,the system can be permanent.

参考文献/References:

[1] Van den osc R. The Pesticide Conspiracy[M]. Garden City: Doubleday Co,1978.
[2] Tang S Y,Xiao Y N,Chen L S,et al. Integrated pest management models and their dynamical behaviour[J]. Bulletin of Mathematical Biology,2005( 67) : 115-135.
[3] Tan Yuanshun,Chen Lansun. Modelling approach for biological control of insect pest by releasing infected pest[J]. Chaos, Solitons and Fractals,2009,39: 304C315.
[4] Van Lenteren J C. Environmental manipulation advantageous to natural enemies of pests[M]/ / Dent D. Integrated Pest Management. London: Chapman Hall,1987: 311-320.
[5] Bainov D D,Simeonov P S. Impulsive Differential Equations: Periodic Solutions and Applications[M]. London: Longman, 1993.
[6] Lakmeche A,Arino O. Bifurcation of non trivial periodic solutions of impulsive differential eqauations arising chmotherapeutic treatment[J]. Dyn Continuous Discrete Impulsive Syst,2000,7: 265-287.
[7] Liu B,Chen L S. The periodic competing Lotka-Volterra model with impulsive effect[J]. Math Med Biol,2004,21: 129- 145.
[8] Tang S Y,Chen L S. Density-dependent birth rate,birth pulses and their population dynamic consequences[J]. J Math Biol, 2002,44: 185-199.
[9] Amine Z,Ortega R. A periodic prey-predator system[J]. J Math Anal Appl,1994, 185: 477-489.
[10] Volterra V. Variazione e fluttuazini del numerod’individui in specie animali convienti[J]. Mem Acad Nazionale Lincei ( Ser. 6) , 1926,2 : 31-113.
[11] Tan Yuanshun,Zhang Hong. Dynamics of the oscillative solution for a non-linear ecosystem with impulsive perturbation [J]. Applied Mechanics and Materials,2012,5 : 471-476.

备注/Memo

备注/Memo:
Foundation item: Supported by the National Science Foundation of China( 11271389) .
Corresponding author: Tan Yuanshun,doctor,majored in biomathematics. E-mail: tanys@ cquc. edu. cn
更新日期/Last Update: 2013-03-11