[1]杨双波.两运动耦合的Morse振子系统本征模区域内环量子化(英文)[J].南京师大学报(自然科学版),2008,31(02):45-48.
 Yang Shuangbo.Torus Quantization in Normal Mode Region for Two Kinetically Coupled Morse Oscillators[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(02):45-48.
点击复制

两运动耦合的Morse振子系统本征模区域内环量子化(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第31卷
期数:
2008年02期
页码:
45-48
栏目:
物理学
出版日期:
2008-06-30

文章信息/Info

Title:
Torus Quantization in Normal Mode Region for Two Kinetically Coupled Morse Oscillators
作者:
杨双波;
南京师范大学物理科学与技术学院 江苏南京210097
Author(s):
Yang Shuangbo
School of Physical Science and Technology,Nanjing Normal University,Nanjing 210097,China
关键词:
EBK量子化条件 本征模 可分离性 量子化回路
Keywords:
EBK quantization cond ition no rm al mode separab ility quantizing c ircu its
分类号:
O413.1
摘要:
报道了两个运动耦合的Morse振子系统相空间中本征模区域内环量子化的结果.研究发现,量子化的结果在数值上很强地依赖于量子化回路的选取.对正确选择的回路,其半经典结果与量子结果符合得很好.我们认为这与系统的可分离性有很大关系.
Abstract:
The results of torus quantization in the norma lm ode reg ions for a system o f two k inetica lly coupledM orse osc illators w as reported. It is found tha t the result o f the quantization is nume rica lly strong ly dependent on the quantizing circu its. For the co rrect circu its w e chose, sem ic lassica l result agrees w e ll w ith quantum resu lt, it is believed that th is re lates to the separability o f the system.

参考文献/References:

[ 1] Yang Shuangbo. B ifurcation phenom ena for tw o k inetically coupledMo rse oscillators[ J] . Journal ofN an jingNo rm alUn iversity: Na tura l Sc ience Ed ition, 2008, 31( 1) : 56-61.
[ 2] Jaff?Char les, Brum er Pau .l Lo ca l and norm a l modes: A class ica l pe rspective [ J] . J Chem Phy s, 1980, 73 ( 11) : 5 646-5 658.
[ 3] Sibert III E L, H ynes J T, ReinhardtW P. C lassica l dynam ics of energy transfer between bonds in ABA triatom ics[ J].J Chem Phys, 1982, 77( 7): 3 583-3 594.
[ 4] M atsushita T, Te rasakaT. M ass dependence of theKAM stab ility and low orde r resonances in the k inetically coupled tw o degrees o f freedom m o rse system [ J]. Chem ica l Physics Letters, 1983, 100( 1): 138-144.
[ 5] Y ang Shuangbo. Torus quantization in loca lmode reg ion fo r tw o kinetically coup ledM o rse o sc illators[ J] . Journa l o fN an jing No rm alUn iv ers ity: Natural Sc ience Edition, 2007, 30( 1): 33-38.
[ 6] DeLeon N, H e ller E J. Vec to r fie lds, line integra,l and H am ilton-Jacobi equa tion: sem ic lassica l quantization of bound state
[ J] . Phy s RevA, 1984, 30( 1): 5-18.
[ 7] PressW H, Teukolsky S A, VetterlingW T, e t a.l Num erica lRec ipes in Fortran77[M ]. Cam bridge: C ambr idgeUn iversity Press, 1999: 102-104.

相似文献/References:

[1]杨双波.两个动能耦合Morse振子系统的分岔现象(英文)[J].南京师大学报(自然科学版),2008,31(01):52.
 Yang Shuangbo.Bifurcation Phenomena of Two Kinetically Coupled Morse Oscillators[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(02):52.
[2]杨双波.两运动耦合的Morse振子系统局域模区域内环量子化(英文)[J].南京师大学报(自然科学版),2007,30(01):33.
 Yang Shuangbo.Torus Quantization in Local Mode Region for Two Kinetically Coupled Morse Oscillators[J].Journal of Nanjing Normal University(Natural Science Edition),2007,30(02):33.

备注/Memo

备注/Memo:
Foundation item: Supported by Nat ional Natu ral Science Foundation of C h ina( 10674073 ) and the Foundat ion of Nan jing N orm al Un ivers ity( 184070H81805) .
Corresponding autho r: Y ang Shuangbo, professor, m ajored in atom ic m olecu lar physics and non linear phys ics. E-m ail:yangshuangbo@ n jnu.edu. cn
更新日期/Last Update: 2013-05-05