[1]方玲玲,齐龙兴.一类SEIRS模型稳定性分析(英文)[J].南京师大学报(自然科学版),2013,36(03):21-30.
 Fang Lingling,Qi Longxing.The Stability Analysis of an SEIRS Model[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):21-30.
点击复制

一类SEIRS模型稳定性分析(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第36卷
期数:
2013年03期
页码:
21-30
栏目:
数学
出版日期:
2013-09-30

文章信息/Info

Title:
The Stability Analysis of an SEIRS Model
作者:
方玲玲1齐龙兴2
(1.江西科技学院公共教学部,江西 南昌 330098) (2.安徽大学数学科学学院,安徽 合肥 230601)
Author(s):
Fang Lingling1Qi Longxing2
(1.Basic Course Teaching Department,JiangXi University of Technology,Nanchang 330098,China) (2.School of Mathematical Sciences,Anhui University,Hefei 230601,China)
关键词:
SEIRS模型非线性发生率稳定性垂直传播时滞
Keywords:
SEIRS modelnonlinear incidencestabilityvertical transmissiontime delay
分类号:
O175.25
摘要:
建立了一个SEIRS流行病模型,考虑更一般形式的非线性发生率.对恢复类中有时滞和没有时滞的模型进行了比较.结果显示,带有时滞的模型的动力学行为与不带时滞的模型的动力学行为是不同的.对于不带时滞的模型,如果基本再生数小于1,无病平衡点(DFE)是全局渐近稳定的.当基本再生数大于1时,不论免疫期的长短系统都存在唯一的地方病平衡点,并且在一定的条件下是局部渐近稳定的.对于带有时滞的模型,DFE的稳定性依赖于基本再生数和时滞.而且,唯一的地方病平衡点的稳定性也依赖于时滞.另外,通过数值模拟显示,当时滞在一定的范围内时,周期解有可能会出现.
Abstract:
In this paper,nonlinear incidence with a more general form is considered in an SEIRS epidemic model.The model without time delay in the removed class is compared with the model with time delay in the removed class.The result shows that the dynamic behaviors of the model with time delay are different from those of the model without delay.For the model without time delay,the disease free equilibrium(DFE)is globally asymptotically stable when the basic reproduction number is smaller than one.When the basic reproduction number is bigger than one,regardless of the time delay length there exists a unique endemic equilibrium which is locally asymptotically stable under a condition.As for the model with time delay,the stability of the DFE depends on the time delay besides the basic reproduction number.Furthermore,the stability of the unique endemic equilibrium can be obtained under some conditions depending on the time delay.In addition,by numerical simulations,periodic solutions can be found from the endemic equilibrium when the time delay is in some regions.

参考文献/References:

[1] Hethcote H W,Van den Driessche P.Some epidemiological models with norlear incidence[J].J Math Biol,1991,29(3):271-287.
[2]Li G H,Jin Z.Global stability of a SEIR epedemic model with infectious force in latent,infected and immune period[J].Chaos,Solitons Fractals,2005,25(5):1 177-1 184.
[3]Wang W D.Global behavior of an SEIRS epidemic model with time delays[J].Appl Math Letters,2002,15(4):423-428.
[4]Zhang T L,Teng Z D.Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence[J].Chaos,Solitons Fractals,2008,37(5):1 456-1 468.
[5]Cui J A,Sun Y H,Zhu H P.The impact of media on the control of infectious diseases[J].J Dynam Differential Equations,2008,20(1):31-53.
[6]Cui J A,Mu X X,Wan H.Saturation covery leads to multiple endemic equilibria and backward bifurcation[J].J Theor Biol,2008,254(2):275-283.
[7]Cui J A,Tao X,Zhu H P.An SIS infection model incorporating media coverage[J].Rocky Mountain J Math,2008,38(5):1 323-1 334.
[8]Li X Z,Zhou L L.Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J].Chaos,Solitons Fractals,2009,40(2):874-884.
[9]Sun C J,Lin Y P,Tang S P.Global stability for an special SEIR epidemic model with nonlinear incidence rates[J].Chaos,Solitons Fractals,2007,33(1):290-297.
[10]Li M Y,Smith H L,Wang L C.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM J Appl Math,2001,62(1):58-69.
[11]Grenhalgh D.Some results for an SEIR epidemic model with density dependence in the death rate[J].IMA J Math Appl Med Biol,1992,9(2):67-106.
[12]Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and non-permanent immunity[J].Math Comput Model,1997,25(1):85-93.
[13]Li M Y,Muldoweney J S.Global stability for SEIR model in epidemiology[J].Math Biosci,1995,125(2):155-167.
[14]Qi L X,Cui J A.The stability of an SEIRS model with nonlinear incidence,vertical transmission and time delay[J].Appl Math Comput,2013,221:360-366.
[15]Li M Y,Muldoweney J S,Wang L C,et al.Global dynamics of an SEIR epi-demic model with a varying total population size[J].Math Biosci,1999,160:191-213.
[16]Zhang J,Ma Z E.Global stability of SEIR model with saturating contact rate[J].Math Biosci,2003,185(1):15-32.
[17]Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].J Math Biol,1986,23(2):187-204.
[18]Busenberg S N,Cooke K L,Pozio M A.Analysis of a model of a vertically transmitted disease[J].J Math Biol,1983,17(3):305-329.
[19]Cooke K L,Busenberg S N.Vertical transmitted diseases[M]//Lakshmicantham.Nonlinear Phenomena in Mathematical Sciences.New York:Academic Press,1982:189-197.
[20]Fine P M.Vectors and vertical transmission,an epidemiological perspective[J].Annal N Y Acad Sci,1975,266:173-194.
[21]Michael Y,Smith H,Wang L.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM J Appl Math,2001,62:58-69.
[22]Busenberg S N,Cooke K L.Vertical Transmitted Diseases:Models and Dynamics.Biomathematics[M].Berlin:Springer-Verlag,1993:23-259.
[23]Busenberg S N,Cooke K L.The population dynamics of two vertically transmitted infections[J].Theor Popul Biol,1988,33(2):181-198.
[24]Bellenir K,Dresser P.Contagious and Non-contagious Infectious Diseases Source-book.Health Science Series 8[M].Detroit:Omnigraphics Inc.,1996:1-566.
[25]Cooke K,Van den Driessche P.Analysis of an SEIRS epidemic model with two delays[J].J Math Biol,1990,35(2):240-258.

相似文献/References:

[1]甘文珍,史一欢.一类具扩散的SIRS传染病模型解的渐近性质[J].南京师大学报(自然科学版),2009,32(03):25.
 Gan Wenzhen,Shi Yihuan.Asymptotic Properties of Solutions to a SIRS Epidemic Model With Diffusion[J].Journal of Nanjing Normal University(Natural Science Edition),2009,32(03):25.
[2]郭中凯,王文婷,李自珍.具有脉冲免疫接种的SEIRS传染病模型分析[J].南京师大学报(自然科学版),2013,36(02):20.
 Guo Zhongkai,Wang Wenting,Li Zizhen.Dynamical Analysis of SEIRS Epidemic Model with Pulse Vaccination[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):20.

备注/Memo

备注/Memo:
Received data:2012-11-14. Foundation item:Supported by the National Natural Science Foundation of China(11126177),the Natural Science Foundation of Anhui Province(1208085QA15),the Foundation for Young Talents in College of Anhui Province(2012SQRL021),the Excellent Course Foundation of Jiangxi University of Technology(KC0801)and the National Scholarship Foundation of China(201206505006). Corresponding author:Qi Longxing,phD.student,associate professor,majored in applied mathematics.E-mail:qilx@ahu.edu.cn
更新日期/Last Update: 2013-09-30