[1]刘睿辰,刘国祥,叶 伟.一类跳扩散过程下期权定价公式的参数估计[J].南京师大学报(自然科学版),2014,37(03):36.
 Liu Ruichen,Liu Guoxiang,Ye Wei.Parameter Estimation of the Option Pricing Formula ona Class of Jump-Diffusion Model[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):36.
点击复制

一类跳扩散过程下期权定价公式的参数估计()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年03期
页码:
36
栏目:
数学
出版日期:
2014-09-30

文章信息/Info

Title:
Parameter Estimation of the Option Pricing Formula ona Class of Jump-Diffusion Model
作者:
刘睿辰1刘国祥2叶 伟23
(1.南京师范大学商学院,江苏 南京 210023)(2.南京师范大学金融与统计研究所,江苏 南京 210023)(3.无锡市第三高级中学,江苏 无锡 212028)
Author(s):
Liu Ruichen1Liu Guoxiang2Ye Wei23
(1.Business School of Nanjing Normal University,Nanjing 210023,China)(2.Financial and Statistical Institute,Nanjing Normal University,Nanjing 210023,China)(3.Wuxi Third Senior High School,Wuxi 214026,China)
关键词:
期权定价跳扩散过程参数估计
Keywords:
option pricingjump-diffusion processparameter estimation
分类号:
O211.9
文献标志码:
A
摘要:
对于参数为常数的跳扩散过程模型下的期权公式,本文给出了较为方便的利用历史数据计算其参数的极大似然估计.
Abstract:
In this thesis,we study the option formula of a jump diffusion process model whose parameters are constants.Based on the history date of underlying asset prices,we propose a procedure to calculate more conveniently the maximum likelihood estimators of the parameters.

参考文献/References:

[1] Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973; 81(3):637-654.
[2]Merton R C.Option pricing when underlying stock return are discontinuous[J].Journal of Economics,1976,3:124-144.
[3]Lo A W,Mackinlary A C.Stock market prices do not follow random walks:evidence from a simple specification test[J].Review of Financial Studies,198,1:41-46.
[4]王献东,杜雪樵.跳扩散模型下的复合期权定价[J].数学的实践与认识,2009,39(14):5-11.
[5]宁丽娟,刘新平.股票价格服从跳-扩散过程的期权定价模型[J].陕西师范大学学报:自然科学版,2003,31(4):16-19.
[6]王志,彭勃,滕宇.跳扩散和随机利率模型下的欧式双向期权定价[J].数学的实践和认识,2010,40(6):9-14.
[7]闫海峰,刘三阳.带有Poisson跳的股票价格模型的期权定价[J].工程数学学报,2003,20(2):35-40.
[8]苏小囡,王文胜.幂式期权在跳扩散模型下的定价[J].华东师范大学学报:自然科学版,2011,5:13-20.
[9]米玲侠,薛红.跳-扩散环境下障碍期权及重置期权定价[J].西安工程大学学报,2010,24(1):118-121.
[10]钱晓松.跳扩散模型中亚式期权的定价[J].应用数学,2003,16(4):161-164.
[11]Daniel Synowiec.Jump-diffusion models with constant parameters for financial log-return processes[J].Computers and Mathematics with Applications,2008,56:2 120-2 127.
[12]Javier F Navas.Calculation of volatility in a jump-diffusion model[J].Journal of Derivaitives,2003,12:66-72
[13]王建稳.Possion跳一扩散模型的参数估计[J].数学的实践与认识,2005,35(7):155-158.
[14]杨珊,薛红,马惠馨.分数跳-扩散下两值期权定价[J].四川理工学院学报:自然科学版,2010,23(4):391-393.

相似文献/References:

[1]魏广华,高启兵,刘国祥.常利力下双复合Poisson风险过程的生存概率[J].南京师大学报(自然科学版),2013,36(02):27.
 Wei Guanghua,Gao Qibing,Liu Guoxiang.Survival Probability in the Double Compound Poisson Risk Process Under Constant Interest Force[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):27.
[2]岑苑君,易法槐.适于风险厌恶型投资的美式看涨期权定价分析[J].南京师大学报(自然科学版),2015,38(04):71.
 Cen Yuanjun,Yi Fahuai.An American Call Option Pricing Model for Risk-Averse Invertors[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):71.
[3]刘雪汝,李美红,田 凡,等.两因素马尔可夫调制的随机波动模型下的期权定价[J].南京师大学报(自然科学版),2019,42(04):31.[doi:10.3969/j.issn.1001-4616.2019.04.005]
 Liu Xueru,Li Meihong,Tian Fan,et al.Two-Factor Markov-Modulated StochasticVolatility Models for Option Pricing[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):31.[doi:10.3969/j.issn.1001-4616.2019.04.005]

备注/Memo

备注/Memo:
收稿日期:2014-02-15.
基金项目:国家自然科学基金(61374080、10801056)、国家社会科学基金(13BJY171)、江苏省社会科学基金(09CJS002)、江苏省高校哲学社会科学基金(2013SJD790031).
通讯联系人:刘国祥,副教授,硕士生导师,研究方向:金融数学.E-mail:gxliu63@163.com
更新日期/Last Update: 2014-09-30