[1]苏淑霞.粒子群算法在云计算任务调度中的应用[J].南京师大学报(自然科学版),2014,37(04):145.
 Su Shuxia.Application of Particle Swarm Optimization Algorithmon Cloud Computing Task Scheduling[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(04):145.
点击复制

粒子群算法在云计算任务调度中的应用()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年04期
页码:
145
栏目:
计算机科学
出版日期:
2014-12-31

文章信息/Info

Title:
Application of Particle Swarm Optimization Algorithmon Cloud Computing Task Scheduling
作者:
苏淑霞
北方民族大学计算机科学与工程学院,宁夏 银川 750021
Author(s):
Su Shuxia
College of Computer Science and Engineering,Beifang University of Nationalities,Yinchuan 750021,China
关键词:
粒子群任务调度适应度云计算
Keywords:
particle swarmtask schedulingfitnesscloud computing
分类号:
TP311
文献标志码:
A
摘要:
针对云计算的任务调度问题,在传统PSO算法的基础上,提出了一种改进粒子群算法的云计算任务调度方法.首先描述了云计算任务调度的数学模型和粒子群算法的基本原理,在此基础之上,采用间接编码方式对资源进行编码,定义了适应度函数,确立粒子速度和位置的更新方法.仿真实验表明,文中的方法获得了较好的调度结果.
Abstract:
Aiming at the problem of task scheduling 0f cloud computing,a task scheduling method was introduced based on particle swarm algorism.Firstly,the mathematical model for cloud computing task scheduling and the principle of particle swarm optimization algorithm were described.and then the paper introduces the encoding of each subtask takes by indirect encoding,defines the fitness function,establish the particle velocity and position updating method.Experimental results show that the method of the paper obtained good scheduling results.

参考文献/References:

[1] 刘鹏.云计算[M].北京:电子工业出版社,2007:2-3.
[2]查英华,杨静丽.改进蚁群算法在云计算任务调度中的应用[J].计算机工程与设计,2013,34(5):1 716-1 719.
[3]熊聪聪,冯龙,陈丽仙,等.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报:自然科学版,2012,40(增刊):1-4.
[4]Braun T D,Siegel H J,Beck N.A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[J].Journal of Parallel and Distributed Computing,2001,61(1):810-837.
[5]郑爱卿.基于执行时间方差的元任务网格调度算法研究[D].北京:北京交通大学电子信息工程学院,2008.
[6]封良良,张陶,贾振红,等.云计算环境下基于粒子群的任务调度算法研究[J].计算机工程,2013,39(5):183-186.
[7]Isard M,Prabhakaran V,Currey J,et al.Fair scheduling for distributed computing clusters[C]//Proceedings of the 22nd ACMSIGOPS Symposium on Operating Systems Principles.New York:ACM,2009:261-276.
[8]遆鸣.云计算下计算能力调度算法的研究和改进[D].太原:太原理工大学计算机科学与技术学院,2012.
[9]王小平,曹立明.遗传算法—理论、应用于软件实现[M].西安:西安交通大学出版社,2002:10-50.
[10]Bratton D,Kennedy J.Defining a standard for particle swarm optimization[C]//Proc of IEEE Swarm Intelligence Symposium.Honolulu,2007.
[11]Kennedy J.The Particle swarm:social adaptation of knowledge[C]//IEEE International Conference on Evolutionary Computation:Indianapolis,1997:303-308.
[12]Shi Y,Eberhart R.A modified particle warm optimizer[C]//IEEE World Congress on Computational Intelligence.Anchorage,USA,1998:69-73.
[13]刘建华.粒子群算法的基本理论及其改进研究[D].湖南:中南大学信息科学与工程学院,2009.

[14]Ali S,Siegel H J,Maheswaran M,et al.Representing task and machine heterogeneities for heterogeneous computing systems[J].Journal of Science and Engineering,2000,3(3):195-207.
[15]沈恺涛.基于云计算和改进粒子群算法的任务调度研究[J].计算机测量与控制,2012,20(11):3 070-3 072.
[16]李斌,李文峰.基于仿真的优化的粒子群算法参数选取研究[J].计算机工程与应用,2011,47(33):30-35.

相似文献/References:

[1]孙 鉴,吴隹伟,刘陈伟,等.一种基于改进人工鱼群的云计算任务调度算法[J].南京师大学报(自然科学版),2024,(01):91.[doi:10.3969/j.issn.1001-4616.2024.01.011]
 Sun Jian,Wu Zhuiwei,Liu Chenwei,et al.A Cloud Computing Task Scheduling Algorithm Based on Improved Artificial Fish Warm[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(04):91.[doi:10.3969/j.issn.1001-4616.2024.01.011]

备注/Memo

备注/Memo:
收稿日期:2014-09-18.
通讯联系人:苏淑霞,副教授,研究方向:计算机体系结构、智能算法.E-mail:susx_516@163.com
更新日期/Last Update: 2014-12-31