参考文献/References:
[1] XU Y,YANG J Y,LU J F,et al. An efficient renovation on kernel fisher discriminant analysis and face recognition experiments[J]. Pattern recognition,2004,37(10):2 091-2 094.
[2]KROEKER K L. Face recognition breakthrough[J]. Communications of the ACM,2009,52(8):18-19.
[3]TURK M,PENTLAND A. Eigenfaces for recognition[J]. Cognit Neurosci,1991,3(1):71-86.
[4]BELHUMEUR P N,HESPANHA J P,KRIENGMAN D J. Eigenfaces versus fisherfaces:recognition using class specific linear projection[J]. IEEE Trans Pattern Anal Mach Intell,1997,19(7):711-720
[5]TANG B,LUO S,HUANG H. High performance face recognition system by creating virtual sample[C]//Proceedings of International Conferenceon Neural Networks and Signal Processing,Toulouse,2003:972-975.
[6]COVER T,HART P. Nearest neighbor pattern classification[J]. IEEE transactions on information,1967,13(1):21-27.
[7]XU Y,ZHU Q,FAN Z,et al. Using the idea of the sparse representation to perform coarse-to-fine face recognition[J]. Information sciences,2013,238(7):138-148.
[8]XU T,ZHU N B. Two-phase method based on virtual test samples and face recognition experiments[C]//2015 12th International Conference on Fuzzy Systems and Knowledge Discovery(FSKD),Zhangjiajie,2015:1 253-1 257.
[9]XU Y,LI X L,YANG J,et al. Integrate the original face image and its mirror image for face recognition[J]. Neurocomputing,2014,131(7):191-199.
[10]XU Y,ZHANG D,YANG J,et al. A two-phase test sample sparse representation method for use with face recognition[J]. IEEE transactions on circuits and systems for video technology,2011,21(9):1 255-1 262.
[11]XU Y,ZHU Q. A simple and fast representation-based face recognition method[J]. Neural computing and applications,2013,22(7/8):1 543-1 549.
[12]TANG D Y,ZHU N B,YU F,et al. A novel sparse representation method based on virtual samples for face recognition[J]. Neural computing and applications,2014,24(3):513-519.
[13]XU Y,ZHU X J,LIU Z M. Using the original and“symmetrical face”training samples to perform representation based two-step face recognition[J]. Pattern recognition,2013,46(4):1 151-1 158.
相似文献/References:
[1]朱长水,丁 勇,袁宝华,等.融合LBP和LPQ的人脸识别[J].南京师范大学学报(自然科学版),2015,38(01):104.
Zhu Changshui,Ding Yong,Yuan Baohua,et al.Face Recognition Based on Local Binary Patternand Local Phase Quantization[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(04):104.
[2]朱 炯.核偏最小二乘回归在面部表情识别中的应用[J].南京师范大学学报(自然科学版),2018,41(03):14.[doi:10.3969/j.issn.1001-4616.2018.03.003]
Zhu Jiong.Kernel Partial Least Squares Regression with Applicationsto Facial Expression Recognition[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(04):14.[doi:10.3969/j.issn.1001-4616.2018.03.003]
[3]顼 聪,朱 毅,陶永鹏.面向方向选择的差值局部方向模式的人脸识别[J].南京师范大学学报(自然科学版),2020,43(04):113.[doi:10.3969/j.issn.1001-4616.2020.04.016]
Xu Cong,Zhu Yi,Tao Yongpeng.Face Recognition Based on Direction-SelectedDifference Local Direction Pattern[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(04):113.[doi:10.3969/j.issn.1001-4616.2020.04.016]
[4]陈飞玥,朱玉莲,陈晓红.多层特征融合的PCANet及其在人脸识别中的应用[J].南京师范大学学报(自然科学版),2021,44(02):127.[doi:10.3969/j.issn.1001-4616.2021.02.018]
Chen Feiyue,Zhu Yulian,Chen Xiaohong.Multi-stage Feature Fusion PCANet and Its Application to Face Recognition[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(04):127.[doi:10.3969/j.issn.1001-4616.2021.02.018]