[1]赵 巍.双分数布朗运动驱动的降低权利金权证定价[J].南京师范大学学报(自然科学版),2017,40(04):21.[doi:10.3969/j.issn.1001-4616.2017.04.005]
 Zhao Wei.Research on Depressed Option Pricing Driven byBifractional Brownian Motion[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(04):21.[doi:10.3969/j.issn.1001-4616.2017.04.005]
点击复制

双分数布朗运动驱动的降低权利金权证定价()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年04期
页码:
21
栏目:
·数学与计算机科学·
出版日期:
2017-12-30

文章信息/Info

Title:
Research on Depressed Option Pricing Driven byBifractional Brownian Motion
文章编号:
1001-4616(2017)04-0021-05
作者:
赵 巍
淮海工学院商学院,江苏 连云港 222005
Author(s):
Zhao Wei
School of Business,Huaihai Institute of Technology,Lianyungang 222005,China
关键词:
双分数布朗运动拟鞅双分数Black-Scholes模型降低权利金
Keywords:
bifractional Brownian motionQuasi-martingalebifractional Black-Scholes modeldepressed option
分类号:
F830.9
DOI:
10.3969/j.issn.1001-4616.2017.04.005
文献标志码:
A
摘要:
双分数布朗运动能满足分形特征,同时在一定条件下能够满足半鞅,已替代分数布朗运动成为数理金融研究中更为合适的工具. 在双分数布朗运动假定下,基于拟鞅定价思路给出了双分数Black-Scholes定价模型的解析解; 随后,着重讨论了双分数布朗运动环境下的降低权利金权证定价问题,使分数布朗运动和标准布朗运动驱动的定价模型都成为其特例. 本文研究方法对求解各类扩展的布朗运动族驱动的定价模型都具有借鉴价值.
Abstract:
Considering of fractional character,Brownian motion is non-reasonable for basic assumption to option pricing model. Fractional Brownian motion suit for the fractional property of financial assets,but it is not a semi-martingale lead to failure to apply stochastic analysis. This paper sets the assert price followed bifractional Brownian motion,and construct quasi-martingale method under the risk neutral measure to solve bifractional Black-Scholes model and two kinds of depressed option by the same way. The results show bifractional Brownian motion and standard Brownian motion become a special example,and the method is important significance of option pricing diven by many kinds of modified Brownian motion.

参考文献/References:

[1] BLACK F,SSHCLES M. The pricing of options and corporate liabilities[J]. Political economy,1973,81(3):637-659.
[2]FAMA E. The behavior of stoek market price[J]. The journal of business,1965,38(1):34-105.
[3]MANDELBROT B B,VAN NESS J W. Fractional Brownian motion,fractional noises and application[J]. SIAM review,1968,10:422-437.[4]LIN S J. Stochastic analysis of fractional Brownian motion,fractional noise and applications[J]. SIAM review,1995,10:422-437. [5]ROGER L C G. Arbitrage with fractional Brownian motion[J]. Mathematical finance,1997,7:95-105.[6]DECREUSEFOND L,USTUNEL A S. Stochastic analysis of the fractional Brownian motion[J]. Potential analysis,1999,10:177-214.[7]HU Y Z,KSENDAL B. Fractional white noise calculus and application to finance[J]. Infinite dimensional analysis,quantum probability and related topics,2000,1(6):32.[8]肖炜麟,张卫国,徐维东. 双分式布朗运动下股本权证的定价[J]. 系统工程学报,2013,28(3):348-354.[9]董莹莹,薛红. 分数布朗运动环境下重置期权定价[J]. 哈尔滨商业大学学报(自然科学版),2016,32(3):242-245.[10]董莹莹,薛红. 双分数跳-扩散过程下重置期权定价[J]. 宁夏大学学报(自然科学版),2016,37(1):1-4.[11]RUSSO F,TUDOR C. On the bifractional Brownian motion[J]. Stochastic processes and application,2006,116(5):830-856.[12]ESSEBAIY K,TUDOR C. Multidimensional bifractional Brownian motion:Ito and Tanaka formulas[J]. Stochastic and dynamics,2007,7(3):365-388.[13]BENDER C,SOTTINE T,VALKEILA E. Arbitrage with fractional Brownian motion[J]. Theory of stochastic processes,2006,12(3):1-12.

相似文献/References:

[1]赵巍.分数布朗运动环境下降低权利金的权证定价研究[J].南京师范大学学报(自然科学版),2012,35(03):11.
 Zhao Wei.Research on Pricing of Depressed Option Stock Under Fractional Brownian Motion Environment[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(04):11.

备注/Memo

备注/Memo:
收稿日期:2016-06-18.
基金项目:江苏省高校哲学社会科学基金项目(2017SJB1685).
通讯联系人:赵巍,副教授,研究方向:金融工程与金融复杂性. E-mail:njzhaow@126.com
更新日期/Last Update: 2017-12-30