[1]文永松,庞一成,张 俊,等.正多边形区域上Laplace算子特征值的非结构网络谱元法[J].南京师范大学学报(自然科学版),2018,41(01):26.[doi:10.3969/j.issn.1001-4616.2018.01.006]
 Wen Yongsong,Pang Yicheng,Zhang Jun,et al.An Unstructured Spectral Element Method for the LaplaceEigenvalue Problem on Regular Polygons[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):26.[doi:10.3969/j.issn.1001-4616.2018.01.006]
点击复制

正多边形区域上Laplace算子特征值的非结构网络谱元法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年01期
页码:
26
栏目:
·数学·
出版日期:
2018-03-31

文章信息/Info

Title:
An Unstructured Spectral Element Method for the LaplaceEigenvalue Problem on Regular Polygons
文章编号:
1001-4616(2018)01-0026-04
作者:
文永松庞一成张 俊朱淑娟
贵州财经大学数学与统计学院,贵州 贵阳 550025
Author(s):
Wen YongsongPang YichengZhang JunZhu Shujuan
School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China
关键词:
Laplace算子特征值问题非结构网络谱元法
Keywords:
Laplace operatoreigenvalue problemunstructured spectral element method
分类号:
O241.82
DOI:
10.3969/j.issn.1001-4616.2018.01.006
文献标志码:
A
摘要:
采用高精度的混合三角形、四边形单元剖分求解任意正多边形区域上的Laplace算子的特征值. 由Legendre多项式线性组合构造内部单元的基函数和边界基函数. 首先,给出特征值的误差估计和算法实现. 然后,测试数值算例的精度,以验证理论结果,表明方法的有效性及正确性.
Abstract:
In this paper,we use an unstructured spectral element method which mixed triangularand quadrangle for the Laplace eigenvalue problem on the regular polygon domain. We construct the basis functions by combing with the Legendre polynomials for the interior element and boundary. The convergence of the eigenvalue and numerical implement are also given. Finally,a series of numerical examples are provided to support the theoretical results and demonstrate the accuracy and efficiency of this methods.

参考文献/References:

[1] PATERA A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of computational physics,1984,54(3):468-488.
[2]MADAY Y,PATERA A. Spectral element methods for the incompressible Navier-Stokes equations[J]. State-of-the-art surveys on computational mechanics,1989:71-143.
[3]BERNARDI C,MADAY Y. Spectral Method[C]//Proceedings of Handbook of Numerical Analysis,North-Holland,1997.
[4]CANUTO C,HUSSAINI M Y,QUARTERONI A,et al. Spectral methods in fluid dynamics[M]. Berlin:Springer-Verlag,1988:285-331.
[5]GOTTLIEB D,ORSZAG D. Numerical analysis of spectral methods:theory and applications[J]. For Industr & Appl Maph,1977,45(4):969-970.
[6]GUO B Y. Spectral methods and their applications[M]. Singapore:World Scientific,1998.
[7]CHEN L Z,SHEN J,XU C J. A triangle spectral method for the Stokes equations[J]. Numer Math-Theory Me,2011,4(2):158-179.
[8]CHEN L Z,SHEN J,XU C J. A unstructured nodal spectral-element method for the Navier-Stokes equations[J]. Commun Comput Phys,2011,12(1):315-336.
[9]SHEN J,WANG L L,LI H. A triangular spectral element method using fully tensorial rational basis functions[J]. SIAM J Numer Anal,2009,47(3):1 619-1 650.
[10]BERNARDI C,MADAY Y. Spectral methods[J]. Handbook of numerical analysis,1997(5):209-485.
[11]BABUSKA I,OSBORN J E. Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods,with particular attention to the case of multiple eigenvalues[J]. SIAM J Numer Anal,1987,24(6):1 249-1 276.

相似文献/References:

[1]伍芸.含Hardy位势的双调和方程在R4中非平凡解问题[J].南京师范大学学报(自然科学版),2014,37(02):44.
 Wu Yun.Nontrivial Solution Problems of Biharmonic Equation with Hardy Potential in R4[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):44.
[2]李 峥,胡 真.基于Dirichlet-to-Neumann映射分析计算旋电光子晶体波导结构[J].南京师范大学学报(自然科学版),2023,46(03):12.[doi:10.3969/j.issn.1001-4616.2023.03.003]
 Li Zheng,Hu Zhen.Analyzing Gyroelectric Photonic Crystal Waveguides by Dirichlet-to-Neumann Maps[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(01):12.[doi:10.3969/j.issn.1001-4616.2023.03.003]

备注/Memo

备注/Memo:
收稿日期:2017-12-12.
基金项目:贵州省教育厅自然科学研究项目(KY字[2016]170)、贵州省科学技术基金(J[2015]2026)、贵州省教育厅自然科学研究项目(KY[2015]482).
通讯联系人:庞一成,博士,副教授,研究方向:高维非线性守恒律方程. E-mail:2009kyhh@sina.com
更新日期/Last Update: 2018-03-31