[1]黄伯强,李启才.保险公司最优比例再保险和配对交易策略[J].南京师范大学学报(自然科学版),2019,42(04):39-43.[doi:10.3969/j.issn.1001-4616.2019.04.006]
 Huang Boqiang,Li Qicai.Optimal Proportional Reinsurance and Pairs Trading Polices for Insurer[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):39-43.[doi:10.3969/j.issn.1001-4616.2019.04.006]
点击复制

保险公司最优比例再保险和配对交易策略()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年04期
页码:
39-43
栏目:
·数学与计算机科学·
出版日期:
2019-12-30

文章信息/Info

Title:
Optimal Proportional Reinsurance and Pairs Trading Polices for Insurer
文章编号:
1001-4616(2019)04-0039-05
作者:
黄伯强1李启才2
(1.南京师范大学中北学院,江苏 南京 210023)(2.南京师范大学数学科学学院,江苏 南京 210023)
Author(s):
Huang Boqiang1Li Qicai2
(1.School of Zhongbei,Nanjing Normal University,Nanjing 210023,China)(2.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
关键词:
比例再保险配对交易价差最优策略随机控制
Keywords:
proportional reinsurancepairs tradingspreadoptimal policesstochastic control
分类号:
F830.91
DOI:
10.3969/j.issn.1001-4616.2019.04.006
文献标志码:
A
摘要:
考虑保险公司通过比例再保险转移索赔风险和配对交易策略管理财富的优化问题. 利用经典的复合泊松索赔过程描述保险公司的盈余,同时保险公司投资包含一份股票多头和若干份股票空头的配对资产组合,该资产价差服从均值-回复过程.在终端财富期望指数效用最大化的准则下,利用随机控制理论获得最优的比例再保险和投资策略及值函数的解析式.
Abstract:
This paper discusses optimization problem which the insurer transfer the claims risk by proportional reinsurance and manage the wealth by pairs trading. The surplus of claims is modeled by compound Poisson process. And the insurer can invest it’s wealth into pairs portfolio which include a long position on one stock and a short on another stock. The price spread of this pair follows a mean-reverting stochastic process. Under maximizing of expect exponent utility of the terminal wealth,the optimal proportional reinsurance and pairs trading polices and value function are solved by stochastic control theory.

参考文献/References:

[1] LITTERMAN B. Modern Investment Management—an Equilibrium Approach[M]. New York:Wiley,2003.
[2]GONCU A,AKYILDIRIM E. Statistical arbitrage with pairs trading[J]. International review of finance,2016,16(2):307-319.
[3]FALLAHPOUR S,HAKIMIAN H,TAHERI K,et al. Pairs trading strategy optimization using the reinforcement learning method:a cointegration approach[J]. Soft comput,2016,20:5051-5066.
[4]YANG J,TSAI S,SHYU S,et al. Paring trading:the performance of a stochastic spread model with regime switching-evidence from the S&P500[J]. International review of economics and finance,2016,43:139-150.
[5]SMITH R,XU X. A good pair:alternative pairs-trading strategies[J]. Financ Mark Portf Manag,2017,31:1-26.
[6]TOURIN A,YAN R. Dynamic pairs trading using the stochastic control approach[J]. Journal of economic dynamics & control,2013,37:1972-1981.
[7]SONG Q,ZHANG Q. An optimal pairs-trading rule[J]. Automatica,2013,49:3007-3014.
[8]傅毅,张寄洲,郭润楠. 基于配对策略的基金动态资产配置[J]. 系统管理学报,2017,26(5):879-887.
[9]李启才,顾孟迪. 指数均值回复金融市场下的最优投资和最优再保险策略[J]. 管理工程学报,2016,30(4):79-84.
[10]李启才. 两类保险业务时保险公司的调节系数和再保险策略[J]. 南京师大学报(自然科学版),2015,38(4):42-46.
[11]FLEMING W,SONER H. Controlled Markov Process an Viscosity Solutions[M]. 2nd ed. New York:Spring,2005.

备注/Memo

备注/Memo:
收稿日期:2019-07-25.
基金项目:国家自然科学基金(11701288)、南京师范大学青蓝工程项目(2016).
通讯联系人:李启才,博士,副教授,研究方向:随机控制理论及其应用. E-mail:17747873@qq.com
更新日期/Last Update: 2019-12-31