[1]胡雅倩,徐 焱.亚纯函数正规族的一点注记[J].南京师大学报(自然科学版),2020,43(04):6-8.[doi:10.3969/j.issn.1001-4616.2020.04.002]
 Hu Yaqian,Xu Yan.A Note on the Normal Family of Meromorphic Functions[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(04):6-8.[doi:10.3969/j.issn.1001-4616.2020.04.002]
点击复制

亚纯函数正规族的一点注记()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第43卷
期数:
2020年04期
页码:
6-8
栏目:
·数学·
出版日期:
2020-12-30

文章信息/Info

Title:
A Note on the Normal Family of Meromorphic Functions
文章编号:
1001-4616(2020)04-0006-03
作者:
胡雅倩徐 焱
南京师范大学数学科学学院,江苏 南京 210023
Author(s):
Hu YaqianXu Yan
School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
Hayman猜测亚纯函数正规族
Keywords:
Hayman’s conjecturemeromorphic functionnormal family
分类号:
O174.52
DOI:
10.3969/j.issn.1001-4616.2020.04.002
文献标志码:
A
摘要:
本文研究了亚纯函数正规定则,得到下面结果. 设k≥4是正整数,F为区域D内的一族亚纯函数,f∈F,a(z)(0,∞)D内亚纯函数,且满足当a(z)=0时, f(z)≠∞; a(z)=∞, f(z)≠0. f’(z)-a(z)fk(z)≠0,FD内正规.
Abstract:
In this paper,we discuss the normality concerning omitted meromorphic function and get the following results. Let F be a family of meromorphic functions on a domain D,k≥4 be a positive integer,and let a(z)(0,∞)be a meromorphic function on D which satisfies f(z)≠∞ whenever a(z)=0 and satisfies f(z)≠0 whenever a(z)=∞. If for any f∈F,f’(z)-a(z)fk(z)≠0,then F is normal on D.

参考文献/References:

[1] HAYMAN W K. Picard values of meromorphic functions and their derivatives[J]. Annals of mathematics(second series),1959,70(1):9-42.
[2]LI X J. Proof of Hayman’s conjecture on normal families[J]. Science in China,1985(6):38-45.
[3]PANG X C. On normal criterion of meromorphic functions[J]. Science in China,1990(5):11-17.
[4]CHEN H H,FANG M L. The value distribution of . Science in China,1995,38(7):23-32.
[5]YANG J H,YANG Q,PANG X C. A normal criterion concerning omitted holomorphic function[J]. Acta mathematics sinica,2019,35(12):1972-1978.
[6]XU Y. Normal families and exceptional functions[J]. Journal of mathematical analysis and applications,2007,329(2):1343-1354.
[7]PANG X C,ZALCMAN L. Normal families of meromorphic functions with multiple zeros and poles[J]. Israel journal of mathematics,2003,136(1):1-9.

相似文献/References:

[1]王品玲,王立庆.亚纯函数的Picard例外集[J].南京师大学报(自然科学版),2011,34(04):26.
 Wang Pinling,Wang Liqing.Picard Exceptional Sets for Meromorphic Functions[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(04):26.
[2]吴凤芹,徐焱.关于亚纯函数及其导函数弱权分担小函数的惟一性[J].南京师大学报(自然科学版),2010,33(01):32.
 Wu Fengqin,Xu Yan.Uniqueness of Meromorphic Functions Weakly Weighted-Sharing One Small Function With Their Derivatives[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):32.
[3]郑娟.一个正规定则的推广(英文)[J].南京师大学报(自然科学版),2009,32(01):25.
 Zheng Juan,Xu Yan.Generalization of a Normality Criteria[J].Journal of Nanjing Normal University(Natural Science Edition),2009,32(04):25.
[4]仇惠玲.分担有理函数的亚纯函数(英文)[J].南京师大学报(自然科学版),2007,30(01):6.
 Qiu Huiling.Meromorphic Functions That Share Rational Functions[J].Journal of Nanjing Normal University(Natural Science Edition),2007,30(04):6.
[5]陈晓绚.亚纯函数族的几个正规定则[J].南京师大学报(自然科学版),2004,27(02):34.
 Chen Xiaoxuan.Some Normality Criteria for Families of Meromorphic Functions[J].Journal of Nanjing Normal University(Natural Science Edition),2004,27(04):34.
[6]雷春林.关于Wronskian行列式亏量和的Ozawa问题[J].南京师大学报(自然科学版),2004,27(03):30.
 Lei Chunlin.On the Deficiency Sums of Wronskians in Ozawa’s Problem[J].Journal of Nanjing Normal University(Natural Science Edition),2004,27(04):30.
[7]陈春芳.亚纯函数及其导数的唯一性[J].南京师大学报(自然科学版),2004,27(03):36.
 Chen Chunfang~.Unicity for Meromorphic Function and Its Derivative[J].Journal of Nanjing Normal University(Natural Science Edition),2004,27(04):36.
[8]张太忠,朱建国.一类单项式与正规族[J].南京师大学报(自然科学版),2001,24(03):7.
 Zhang Taizhong,Zhu Jianguo.A Class of Monomials and Normal Families[J].Journal of Nanjing Normal University(Natural Science Edition),2001,24(04):7.
[9]张建军,李 晶.关于复差分方程和q-差分方程的一些结果[J].南京师大学报(自然科学版),2013,36(04):30.
 Zhang Jianjun,Li Jing.Some Results on Complex Difference and q-Difference Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(04):30.
[10]徐新萍,张建军.关于复差分方程Wittich定理的一个新证明(英文)[J].南京师大学报(自然科学版),2015,38(04):22.
 Xu Xinping,Zhang Jianjun.On a New Proof of Wittich Theorem ofComplex Difference Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(04):22.

备注/Memo

备注/Memo:
收稿日期:2019-12-30.
基金项目:国家自然科学基金项目(11471163).
通讯作者:胡雅倩,硕士研究生,研究方向:复分析. E-mail:1255663084@qq.com
更新日期/Last Update: 2020-11-15