[1]冯亚芳,周广良.有限域上的置换多项式[J].南京师大学报(自然科学版),2021,44(02):6-9.[doi:10.3969/j.issn.1001-4616.2021.02.002]
 Feng Yafang,Zhou Guangliang.Permutation Polynomials over Finite Fields[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):6-9.[doi:10.3969/j.issn.1001-4616.2021.02.002]
点击复制

有限域上的置换多项式()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第44卷
期数:
2021年02期
页码:
6-9
栏目:
·数学·
出版日期:
2021-06-30

文章信息/Info

Title:
Permutation Polynomials over Finite Fields
文章编号:
1001-4616(2021)02-0006-04
作者:
冯亚芳周广良
南京师范大学数学科学学院,江苏 南京 210046
Author(s):
Feng YafangZhou Guangliang
School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
关键词:
有限域置换多项式迹函数
Keywords:
finite fieldpermutation polynomialtrace function
分类号:
O156
DOI:
10.3969/j.issn.1001-4616.2021.02.002
文献标志码:
A
摘要:
Fpm为有限域,其中p为素数,m为正整数.如果多项式f(x)∈Fpm[x] Fpm→Fpm 的一个双射,则我们称f(x)Fpm的一个置换多项式. 本文通过对有限域F2m上的形如(xpk-x+δ)s+L(x)的置换多项式进行研究,得出了一些特征为2的有限域F2m上类似上述形式的置换多项式.
Abstract:
Let p be a prime,m a positive integer,and Fpm the finite field with pm elements. A polynomial f(x)∈Fpm[x] is said to be a permutation polynomial over Fpm if it induces a permutation from Fpm to Fpm. This paper dedicated to the permutation polynomial with the form(xpk-x+δ)s+L(x)over finite field Fpm. We obtain several kinds of permutation polynomials as mentioned above over finite fields F2m.

参考文献/References:

[1] CORRADA B C J,KUMAR P V. Permutation polynomials for interleavers in turbo codes[C]//United States:Institute of electrical and Elestranics Engineers,2003:318-318.
[2]MULLEN G L. Permutation polynomials over finite fields[J]. Finite fields,coding theory,and advances in communications and computing,1991,95(3):131-151.
[3]LIDL R,NIEDERREITER H. Finite fields encyclopedia of mathematics and its applications[M]. Cambridge:Cambridge University Press,1983.
[4]LIDL R,NIEDERREITER H. Introduction to finite fields and their applications[M]. Cambridge:Cambridge University Press,1986.
[5]BERLEKAMP E R,RUMSEY H,SOLOMON G. On the solution of algebraic equations over finite fields[J]. Information and control,1967,10(3):553-564.
[6]LI N,HELLESETH T,TANG X. Further results on a class of permutation polynomials over finite fields[J]. Finite fields and their applications,2013,22(3):16-23.
[7]YUAN J,DING C. Four classes of permutation polynomials of F2m[J]. Finite fields and their applications,2007,13(4):869-876.
[8]YUAN J,DING C,WANG H,et al. Permutation polynomials of the form(xp-x+δ)s+L(x)[J]. Finite fields and their applications,2007,13(4):869-876.
[8]YUAN J,DING C,WANG H,et al. Permutation polynomials of the form. Finite fields and their applications,2008,14(2):482-493.
[9]LIDL R,MULLEN G L. When does a polynomial over a finite field permute the elements of the field?[J]. AM math mon,1988,95(3):243-246.
[10]LIDL R,MULLEN G L. When does a polynomial over a finite field permute the elements of the field?[J]. AM math mon,1993,100(1):71-74.
[11]BALL S,ZIEVE M. Symplectic spreads and permutation polynomials[M]. Berlin:Springer,2004.
[12]ZENG X,ZHU X,HU L. Two new permutation polynomials with the form(x2k+x+δ)s+x over F2m[J]. Applicable algebra in engineering communication and computing,2010,21(2):145-150.
[13]HOU X. Permutation polynomials over finite fields—a survey of recent advances[J]. Finite fields and their applications,2015,32(1):82-119.
[14]ZHA Z,HU L. Two classes of permutation polynomials over finite fields[J]. Finite fields and their applications,2012,18(4):781-790.
[15]TU Z,ZENG X,JIANG Y. Two classes of permutation polynomials having the form(x2m+x+δ)s+x[J]. Finite fields and their applications,2015,31(1):12-24.

相似文献/References:

[1]张 彬.有限域上的二次型表数[J].南京师大学报(自然科学版),2013,36(02):1.
 Zhang Bin.The Number of Quadratic Forms Representations in Finite Fields[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(02):1.

备注/Memo

备注/Memo:
收稿日期:2018-11-28.
通讯作者:冯亚芳,硕士,研究方向:微分方程数值解、代数数论. E-mail:yafangf@126.com
更新日期/Last Update: 2021-06-30