[1]林文贤.具分布时滞和阻尼项的三阶中立型微分方程的振动性[J].南京师大学报(自然科学版),2023,46(02):1-6.[doi:10.3969/j.issn.1001-4616.2023.02.001]
 Lin Wenxian.Oscillation of Third-Order Neutral Differential Equations with Distributed Delays and Damping[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(02):1-6.[doi:10.3969/j.issn.1001-4616.2023.02.001]
点击复制

具分布时滞和阻尼项的三阶中立型微分方程的振动性()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年02期
页码:
1-6
栏目:
数学
出版日期:
2023-06-15

文章信息/Info

Title:
Oscillation of Third-Order Neutral Differential Equations with Distributed Delays and Damping
文章编号:
1001-4616(2023)02-0001-06
作者:
林文贤
(韩山师范学院数学与统计学院,广东 潮州 521041)
Author(s):
Lin Wenxian
(College of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China)
关键词:
振动性分布时滞微分方程阻尼项
Keywords:
oscillation distributed delays differential equations damping terms
分类号:
O175.1
DOI:
10.3969/j.issn.1001-4616.2023.02.001
文献标志码:
A
摘要:
研究一类具分布时滞和阻尼项的三阶非线性中立项微分方程的振动性,利用广义Riccati变换技术及一些分析技巧,建立了该类方程的新的振动准则,通过实例加以验证.
Abstract:
The present paper focuses on the oscillation of the third-order nonliear neutral differential equations with distributed delays and damping. By applying the generalized Riccati transformation and some analytic techniques, we establish several oscillation criteria for the discussed equation, which show that any solution either oscillates or converges to zero. Finally, we gives some examples to prove the efficiency.

参考文献/References:

[1]HALE J K,LUNEL S V. Introduction to functional differential equations[M]. New York:Springer-Verlag,1977.
[2]BACULIKOVA B,DZURINA J. Oscillation of third-order neutral differential equations[J]. Mathematical and computer modelling,2010,52(1):215-226.
[3]YANG L L,XU Z T. Oscillation of certain third-order quasilinear neutral differential equation[J]. Mathematica slovaca,2014,64(1):85-100.
[4]JIANG Y,JIANG C M,LI T X. Oscillatory behavior of third-order nonliear neutral delay differential equations[J]. Advances in difference equations,2016(1):171-182.
[5]林文贤. 一类具阻尼项的三阶半线性中立型泛函微分方程的Philos型振动结果[J]. 安徽大学学报(自然科学版),2016,55(6):28-32.
[6]林文贤. 一类具阻尼项的三阶非线性中立型泛函微分方程的振动性[J]. 中山大学学报(自然科学版),2016,40(6):1-4.
[7]林文贤. 三阶半线性中立型阻尼泛函微分方程的振动性[J]. 华东师范大学学报(自然科学版),2017,2017(3):48-53.
[8]惠远先,李培峦,戴丽华. 一类三阶非线性分布时滞动力方程的振动结果[J]. 浙江大学学报(理科版),2019,46(3):315-322.
[9]HARDY G H,LITTLEWOOD J E,POLYA G. Inequalities,second edition[M]. Cambridge:Cambridge University Press,1988.
[10]KIGURADGE I T,CHANTURIYA T A. Asymptotic properties of solutions of nonautonomous ordinary differential equations[M]. Dordreecht:Kluwer Academic Publishers,1993.

相似文献/References:

[1]林文贤.一类具分布式偏差变元中立双曲型泛函微分方程的振动性[J].南京师大学报(自然科学版),2011,34(04):13.
 Lin Wenxian.Oscillation of Certain Neutral Hyperbolic Functional Differential Equations With Distributed Deviating Arguments[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(02):13.
[2]罗李平.一类带分布时滞的非线性中立型广义弹性杆方程的振动分析[J].南京师大学报(自然科学版),2022,45(04):10.[doi:10.3969/j.issn.1001-4616.2022.04.002]
 Luo Liping.Oscillatory Analysis for a Class of Nonlinear Neutral Generalized Elastic-Rod Equations with Distributed Delay[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(02):10.[doi:10.3969/j.issn.1001-4616.2022.04.002]

备注/Memo

备注/Memo:
收稿日期:2022-09-28.
基金项目:广东省自然科学基金项目(2021A1515010303)、广东省一流课程《数学分析》建设项目(Z21011)、韩山师范学院教育教学改革项目(粤韩师教(2021)148号)、韩山师范学院质量工程建设项目(粤韩师教(2022)143号).
通讯作者:林文贤,教授,研究方向:泛函微分方程理论及应用的研究. E-mail:2450512677@qq.com
更新日期/Last Update: 2023-06-15