[ 1] FangM L, XuW S. Un ic ity theorem fo rme rom o rph ic functions that share two fin ite sets CM [ J]. 南京师大学报: 自然科学版, 1999, 22( 1): 11-15.
[ 2] Q iu H L. M e rom orph ic functions that share rationa l functions[ J]. 南京师大学报: 自然科学版, 2007, 30( 1) : 6-12.
[ 3] 仇惠玲. 关于亚纯函数的惟一性[ J]. 南京师大学报: 自然科学版, 1998, 21( 2): 25-30.
[ 4] 陈春芳. 亚纯函数及其导数的惟一性[ J]. 南京师大学报: 自然科学版, 2004, 27( 3): 36-39.
[ 5] Jank G, M ues E, Volkm ann L. M erom orphe Funktionen, d ie m it ihre r erstenund zwe iten Ab leitung einen end lichen W ertte ilen[ J] . Comp lex Va riab les 6, 1986: 51-71.
[ 6] Yang C C, Y iH X. Un iqueness Theory o fM eromo rph ic Functions[M ]. Be ijing: Sc ience Press, 1995.
[ 7] H ua X H. Ex ceptional va lues o fm erom oph ic functions[ J]. Adv inM ath, 1992, 21: 153-167.
[ 8] H ua X H, Yang C C. Un iqueness prob lem s of entire and m eromo rph ic func tions[ J] . BullH ong Kong M ath Soc, 1997, 1( 2) : 289-300.
[ 9] Yang L Z. Som e recent prog ress in the un iqueness theo ry o fm erom orphic functions[ C ] / / Pro ceedings o f the Second ISAAC Cong ress ( Fukuoka). Do rdrecht: K luw erA cad Pub,l 1999: 551-564.
[ 10] Yang L Z. Further resu lts on entire functions tha t share one va luew ith their der ivatives[ J]. JM a th Ana lApp,l 1997, 212:529-536.
[ 11] Chang JM, FangM L. On entire functions tha t share a va lue w ith the ir der iva tives[ J]. Ann Acad Fcnn M ath, 2006, 31( 2): 265-286.
[ 12] Gross F. Factor ization ofM e rom orph ic Functions[M ]. W ash ington: Naval Research Lab, 1972.
[ 13] H aym anW K. M erom orph ic Functions[M ]. London: Ox ford Univ Press, 1964.
[ 14] Yang L. Va lue D istribution Theory [M ]. Ber lin: Springer-Ver lag, 1993.