|Table of Contents|

Image Classification Based on Twin Support Vector Machines(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年03期
Page:
8-
Research Field:
计算机科学
Publishing date:

Info

Title:
Image Classification Based on Twin Support Vector Machines
Author(s):
Zhu Zhibin1Ding Shifei12
(1.School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China)(2.Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China)
Keywords:
image classificationSupport Vector MachineTwin Support Vector Machinesfeature extraction
PACS:
TP181
DOI:
-
Abstract:
The image classification is one of the most important technologies of image data processing.Support Vector Machine is a machine learning algorithm based on statistical learning theory,which can achieve a good classification results in the small sample size.Twin Support Vector Machines is based on Support Vector Machine,which is superior to Support Vector Machine.By extracting color features and texture features of images,using Twin Support Vector Machines and Support Vector Machine to classify these feature vectors,the results shows that the accuracy and stability of Twin Support Vector Machines is higher than Support Vector Machine.

References:

[1] 李弼程,彭天强,彭波.智能图像处理技术[M].北京:电子工业出版社,2004.
[2]Marques de Sa J P,吴逸飞.模式识别—原理、方法及应用[M].北京:清华大学出版社,2002.
[3]Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
[4]Cristianini N,Shawe-Taylor J.支持向量机导论[M].李国正,王猛,曾华军,等译.北京:电子工业出版社,2004.
[5]丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
[6]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
[7]顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17.
[8]刘晓亮,丁世飞.SVM用于文本分类的适用性[J].计算机工程与科学,2010,32(6):106-108.
[9]林开标,王周敬.基于支持向量机的传真收件人识别方法[J].计算机工程与应用,2006(7):156-158.
[10]谢塞琴,沈福明,邱雪娜.基于支持向量机的人脸识别方法[J].计算机工程,2009,35(16):186-188.
[11]李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选择[J].软件工程,2005,42(10):1 796-1 801.
[12]高伟,王宁.浅海混响时间序列的支持向量机预测[J].计算机工程,2008,34(6):25-27.
[13]Jayadeva R K,Khemchandani R,Chandra S.Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[14]张志安,冯宏伟.一种新的基于纹理和空间分布特征的图像检索[J].光电子学报,2008,37(2):400-403.
[15]Pun C M,Lee M C.Rotation invariant texture feature for content based image retrieval[J].Computer Vision and Image Understanding,2003,89(1):24-43.
[16]Han Jun,Ma Kaikuang.Fuzzy color histogram and its use in color image retrieval[J].IEEE Transactions on Image Processing,2002,11(8):944-952.
[17]Deng Yining,Manjunath B S,Kenney Charles,et al.An efficient color representation for image retrieval[J].IEEE Transactions of Image Processing,2001,1(10):140-147.
[18]Gomez-Moreno H,Maldonado Bascon S,Lopez Ferreras F.Edge detection in noisy images by using the support vector machines[C]//International Work-Conference on Artificial Neural Networks.Heidelberg:Springer-Verlag,2001:686-692.
[19]常哲,候榆青,程涛,等.综合颜色和纹理特征的图像检索[C]//全国第三届信号智能信息处理与应用学术交流会.昆明:计算机工程与应用,2009,1(11):237-240.
[20]Qi Bingjuan,Ding Shifei,Huang Huajuan,et al.Support vector extraction method based on clustering membership[J].International Journal of Digital Content Technology and its Applications,2012,6(13):1-10.
[21]齐丙娟,丁世飞.基于FCM隶属度的支持向量机[J].微电子学与计算机,2011,28(10):48-51.
[22]Ding Shifei,Yu Junzhao,Huang Huajuan,et al.Twin support vector machines based on particle swarm optimization[J].Journal of Computers,2013,8(9):2 296-2 303.
[23]Huang Huajuan,Ding Shifei,Wu Fulin.Invasive weed optimization algorithm for optimizating the parameters of mixed kernel twin support vecotr machines[J].Journal of Computers,2013,8(8):2 077-2 084.
[24]Ding Shifei,Wu Fulin,Nie Ru,et al.Twin support vector machines based on quantum particle swarm optimization[J].Journal of Software,2013,8(7):1 743-1 750.
[25]Ding Shifei,Huang Huajuan,Nie Ru.Forecasting method of stock price based on polynomial smooth twin support vector regression[J].Lecture Notes in Computer Science,2013,7 995:96-105.

Memo

Memo:
-
Last Update: 2014-09-30