[1] Einstein A,Podolsky B,Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Phys Rev,1935,47:777-780.
[2]Nielsen M A,Chuang I L. Quantum Computation and Quantum Information[M]. Cambridge:Cambridge University Press,2011:1-169.
[3]Vedral V. Introduction to Quantum Information Science[M]. Oxford:Oxford University Press,2006:44-50.
[4]Amico L,Fazio R,Osterloh A,et al. Entanglement in many-body systems[J]. Rev Mod Phys,2008,80:517-576.
[5]Ollivier H,Zurek W H. Quantum discord:a measure of the quantumness of correlations[J]. Phys Rev Lett,2002,88:017901(1-4).
[6]Henderson L,Vedral V. Classical,quantum and total correlations[J]. J Phys A,2001,34:6 899-6 905.
[7]Datta A,Shaji A,Caves M. Quantum discord and the power of one qubit[J]. Phys Rev Lett,2008,100:050502.
[8]Lanyon B P,Barbieri M,Almeida M P,et al. Experimental quantum computing without entanglement[J]. Phys Rev Lett,2008,101:200501(1-4).
[9]Ferraro A,Aolita L,Cavalcanti D,et al. Almost all quantum states have nonclassical correlations[J]. Phys Rev A,2010,81:052318(1-6).
[10]Modi K,Brodutch A,Cable H,et al. The classical-quantum boundary for correlations:Discord and related measures[J]. Rev Mod Phys,2012,84:1 655-1 707.
[11]Sachdev S. Quantum Phase Transitions[M]. 2nd ed. Cambridge:Cambridge University Press,2011:3-17.
[12]Dillenschneider R. Quantum discord and quantum phase transition in spin chains[J]. Phys Rev B,2008,78:224 413(1-7).
[13]Sarandy M S. Classical correlation and quantum discord in critical systems[J]. Phys Rev A,2009,80:022108(1-9).
[14]Maziero J,Guzman H C,Céleri L C,et al. Serra,quantum and classical thermal correlations in the XY spin-1/2 chain[J]. Phys Rev A,2010,82:012106(1-6).
[15]Werlang T,Gustavo Rigolin. Thermal and magnetic quantum discord in Heisenberg models[J]. Phys Rev A,2010,81:044101(1-4).
[16]Werlang T,Ribeiro G A P,Gustavo Rigolin. Quantum correlations in spin chains at finite temperatures and quantum phase transitions[J]. Phys Rev Lett,2010,105:095702(1-4).
[17]Werlang T,Ribeiro G A P,Gustavo Rigolin. Spotlighting quantum critical points via quantum correlations at finite temperatures[J]. Phys Rev A,2011,83:62334(1-10).
[18]Li Yanchao,Lin Haiqing. Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction[J]. Phys Rev A,2011,83:052323(1-7).
[19]Altintas F,Eryigit R. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems[J]. Annals of Physics,2012,327:3 084-3 107.
[20]Cheng W W,Shan C J,Sheng Y B,et al. Quantum correlation approach to criticality in the XX spin chain with multiple interaction[J]. Physica B,2012,407:3 671-3 675.
[21]Liu Benqiong,Shao Bin,Zou Jian. Quantum and classical correlations in isotropic XY chain with three-site interaction[J]. Commm Theor Phys,2011,56:46-50.
[22]Cheng W W,Liu J M. Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions[J]. Phys Rev A,2010,82:012308(1-5).
[23]Liu Xiaoxian,Zhong Ming,Xu Hui,et al. Chiral phase and quantum phase transitions of anisotropic XY chains with three-site interactions[J]. J Stat Mech,2012,1:P01003(1-15).
[24]Ping Lou,Wen-Chin Wu,Ming-Che Chang. Quantum phase transition in spin-1/2 XX Heisenberg chain with three-spin interaction[J]. Phys Rev B,2004,70:064405(1-7).
[25]Gottlieb D,Rössler J. Exact solution of a spin chain with binary and ternary interactions of Dzialoshinsky-Moriya type[J]. Phys Rev B,1999,60:9 232-9 235.
[26]Min-Fong Yang. Reexamination of entanglement and the quantum phase transition[J]. Phys Rev A,2005,71:030302(1-4).
[27]Topilko M,Krokhmalskii T,Derzhko O,et al. Magnetocaloric effect in spin-1/2 XX chains with three-spin interactions[J]. The European Physical Journal:B,2012,85:278(1-9).
[28]Osborne T J,Nielsen M A. Entanglement in a simple quantum phase transition[J]. Phys Rev A,2002,66:032110(1-14).