[1]范允征,林 路.线性回归模型的深度加权最小二乘估计和拟合检验[J].南京师大学报(自然科学版),2008,31(03):39-43.
 Fan Yunzheng,Lin Lu.Depth-Weighted LSE for Linear Regression Model and the Fit-Test[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(03):39-43.
点击复制

线性回归模型的深度加权最小二乘估计和拟合检验()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第31卷
期数:
2008年03期
页码:
39-43
栏目:
数学
出版日期:
2008-09-30

文章信息/Info

Title:
Depth-Weighted LSE for Linear Regression Model and the Fit-Test
作者:
范允征1 林 路2
( 1. 南通大学理学院, 江苏南通226007)
( 2. 山东大学数学与系统科学学院, 山东济南250100 )
Author(s):
Fan Yunzheng1Lin Lu2
1.School of Science,Nantong University,Nantong 226007,China
关键词:
稳健性 统计深度 深度加权 LSE
Keywords:
robustness statistica l dep th depth-w eigh ted LSE
分类号:
O212.1
摘要:
在线性回归模型中普通的最小二乘估计(LSE)许多情形下是不稳健的.本文介绍了一种投影深度函数,深度加权平均和深度加权LSE,这些估计量有符合需要的稳健性.并讨论了在深度加权LSE情形下线性回归模型的拟合检验问题.
Abstract:
The ordinary Least Squares Estim ate ( LSE) in linear regress ion model is no t robust form any cases. A c lass o f projection-based depth functions, depth-w e ighted m ean and depth-w e ighted LSE w ere studied. These estim ates had desirable robustness. The prob lem of testing the fit of linear regression m ode l under the depth-w e ighted LSE w ere a lso d iscussed.

参考文献/References:

[ 1] Godambe V P. Estim ating Functions[M ] . Oxfo rd: C larendon Press, 1991.
[ 2] Tukey JW. M athem atics and picturing data[ J]. Proc Intern CongrM ath V ancouver, 1975, 2( 2): 523-531.
[ 3] Liu R Y. On a notion of data depth based on random s imp lices[ J]. Ann Sta tist, 1990, 18( 2): 405-414.
[ 4] Zuo Y J, Se rfling R. Gene ra l notions o f statistica l depth function[ J]. Ann S tatist, 2000a, 28( 2): 461-482.
[ 5] Zuo Y J, Se rfling R. Structura l properties and convergence results for contours o f samp le statistical depth func tions[ J]. Ann Sta tist, 2000b, 28( 2) : 483-499.
[ 6] Zuo Y J, Cu iH J, H eX M. On the stahe-l Donoho estim a to r and depth-we ighted m eans ofm ultivariate data[ J] . Ann Statist,2004, 32( 1): 167-188.
[ 7] Lin L, ChenM H. Robust estim ating equation based on sta tistica l depth[ J]. Statistical Pape rs, 2006, 47( 2): 263-278
[ 8] Rousseeuw P J, H ubertM. Regression depth[ J]. JASA, 1999, 94: 389-433.
[ 9] Jeffrey D H a rt. Non Param etric Smoo th ing and Lack-o-f F it Tests[M ]. New York, Ber lin, H e ide lberg: Spr ing er-Ve rlag,1977.
[ 10] H oe ffdingW, Robb ins H. The centra l lim it theo rem for dependent random var iables[ J]. DukeM a th J, 1948, 15( 3): 773-780.

相似文献/References:

[1]郭玉玲,黄建国.求解弹性振动方程的稳健C0P1-P3时空有限元方法[J].南京师大学报(自然科学版),2019,42(04):12.[doi:10.3969/j.issn.1001-4616.2019.04.002]
 Guo Yuling,Huang Jianguo.Time Finite ElementMethod for Elastic Vibration Problems[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):12.[doi:10.3969/j.issn.1001-4616.2019.04.002]

备注/Memo

备注/Memo:
基金项目: 江苏省自然科学基金指导性计划( 06KJD110051 )资助项目.
通讯联系人: 范允征, 副教授, 研究方向: 稳健统计. E-m a il:fan. yzh@ ntu. edu. cn
更新日期/Last Update: 2013-05-05