参考文献/References:
[1] Heller E J,O’Connor P W,Gehlen J. The eigenfunctions of classical chaostic systems[J]. Physica Scripta, 1989,40: 354- 359.
[2] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报: 自然科学版, 2009,31( 3) : 31.
[3] Wintgen D,Marxer H,Briggs J S. Properties of off-shell coulomb radial wave functions[J]. J Phys A, 1987, 20: L965-L968.
[4] Casati D,Chirikov B V,Ford J,et al. Stochastic behavior of a quantum pendulum under periodic perturbation[M]. Lect Notes Phys, 1979 93: 334-352.
[5] Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function[J]. Dokl Akad Nauk SSSR, 1954,98: 527-530.
[6] Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR, 1963, 18: 13-40.
[7] Moser J. On invariant curves of area-preserving mappings of an annulus[J]. Nachr Akad Wiss Gottingen Math—Phys, 1962, K1: 1-20.
[8] Zaslavsky G M,Zakharov My,Sagdeev R Z,et al. Stochastic web and diffusion of particles in a magnetic field [J]. Sov Phys JEPT, 1986, 64: 294-303.
[9] Hu Bambi,Li Baowen,Liu Jie,et al. Quantum chaos of a kicked particle in an infinite potential well [J]. Phys Rev Lett, 1999, 82: 4 224-4 227.
[10] Dana Itzhack,Amit Maty. General approach to diffusion of periodically kicked charges in a magnetic field [J]. Phys Rev E, 1995, 51: R2 731-R2 734.
相似文献/References:
[1]曹芳东,吴江,徐敏,等.基于分形理论的旅游业制度系统构建的复杂性研究与启示[J].南京师大学报(自然科学版),2010,33(04):97.
Cao Fangdong,Wu Jiang,Xu Min.Research and Enlightenment of the Complexity System Based on Fractal Theory About Tourism System[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):97.
[2]朱晓华,王建,陆娟.关于地学中分形理论应用的思考[J].南京师大学报(自然科学版),2001,24(03):93.
Zhu Xiaohua,Wang Jian,Lu Juan.Some Thinking about the Application of Fractal Theory in Geography[J].Journal of Nanjing Normal University(Natural Science Edition),2001,24(04):93.