[1]杨双波,韦栋.周期受击简谐振子系统的经典与量子动力学[J].南京师大学报(自然科学版),2011,34(04):49-54.
 Yang Shuangbo,Wei Dong.Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(04):49-54.
点击复制

周期受击简谐振子系统的经典与量子动力学()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第34卷
期数:
2011年04期
页码:
49-54
栏目:
物理学
出版日期:
2011-12-20

文章信息/Info

Title:
Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator
作者:
杨双波韦栋
南京师范大学物理科学与技术学院,江苏南京210046
Author(s):
Yang ShuangboWei Dong
School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
关键词:
分形随机网量子动力学Floquet 算符本征值准能量
Keywords:
fractalstochastic webquantum dynamicsFloquet operatoreigenvaluequasienergy
分类号:
O413.1;O415.5
摘要:
研究一个周期受击简谐振子系统的经典与量子动力学.研究发现,随着打击强度κ的增加,经典相空间发生分形时,一步时间演化算符的本征值分布也从单位圆的圆周上朝着圆心扩散.而当本征值归一化后,归一化后的本征值分布又回到单位圆周上.
Abstract:
This paper studies the classical and quantum dynamics of a periodically kicked Harmonic oscillator system. It is found that as we increase the kicking strength κ, and fractal takes place in classical phase space, the eigenvalue distribution of the one step time evolution operator will diffuse toward the center of the unit circle, from on the unit circle. When the eigenvalues are normalized,the normalized eigenvalue distribution will back to on the unit circle.

参考文献/References:

[1] Heller E J,O’Connor P W,Gehlen J. The eigenfunctions of classical chaostic systems[J]. Physica Scripta, 1989,40: 354- 359.
[2] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报: 自然科学版, 2009,31( 3) : 31.
[3] Wintgen D,Marxer H,Briggs J S. Properties of off-shell coulomb radial wave functions[J]. J Phys A, 1987, 20: L965-L968.
[4] Casati D,Chirikov B V,Ford J,et al. Stochastic behavior of a quantum pendulum under periodic perturbation[M]. Lect Notes Phys, 1979 93: 334-352.
[5] Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function[J]. Dokl Akad Nauk SSSR, 1954,98: 527-530.
[6] Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR, 1963, 18: 13-40.
[7] Moser J. On invariant curves of area-preserving mappings of an annulus[J]. Nachr Akad Wiss Gottingen Math—Phys, 1962, K1: 1-20.
[8] Zaslavsky G M,Zakharov My,Sagdeev R Z,et al. Stochastic web and diffusion of particles in a magnetic field [J]. Sov Phys JEPT, 1986, 64: 294-303.
[9] Hu Bambi,Li Baowen,Liu Jie,et al. Quantum chaos of a kicked particle in an infinite potential well [J]. Phys Rev Lett, 1999, 82: 4 224-4 227.
[10] Dana Itzhack,Amit Maty. General approach to diffusion of periodically kicked charges in a magnetic field [J]. Phys Rev E, 1995, 51: R2 731-R2 734.

相似文献/References:

[1]曹芳东,吴江,徐敏,等.基于分形理论的旅游业制度系统构建的复杂性研究与启示[J].南京师大学报(自然科学版),2010,33(04):97.
 Cao Fangdong,Wu Jiang,Xu Min.Research and Enlightenment of the Complexity System Based on Fractal Theory About Tourism System[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):97.
[2]朱晓华,王建,陆娟.关于地学中分形理论应用的思考[J].南京师大学报(自然科学版),2001,24(03):93.
 Zhu Xiaohua,Wang Jian,Lu Juan.Some Thinking about the Application of Fractal Theory in Geography[J].Journal of Nanjing Normal University(Natural Science Edition),2001,24(04):93.

备注/Memo

备注/Memo:
通讯联系人: 杨双波,教授,研究方向: 量子混沌. E-mail: yangshuangbo@ njnu. edu. Cn
更新日期/Last Update: 2013-03-21