[1]张康群,李宇尘.Tricomi型方程在矩形区域上的Dirichlet问题(英文)[J].南京师范大学学报(自然科学版),2016,39(01):29.
 Zhang Kangqun,Li Yuchen.On Dirichlet Problem of Tricomi-Type Equationin Rectangular Domains[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(01):29.
点击复制

Tricomi型方程在矩形区域上的Dirichlet问题(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年01期
页码:
29
栏目:
数学
出版日期:
2016-03-31

文章信息/Info

Title:
On Dirichlet Problem of Tricomi-Type Equationin Rectangular Domains
作者:
张康群李宇尘
南京工程学院数理部,江苏 南京 211167
Author(s):
Zhang KangqunLi Yuchen
Department of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167,China
关键词:
Tricomi型方程Dirichlet问题适定性不适定性
Keywords:
Tricomi-type equationDirichlet problemwell-posednessill-posedness
分类号:
O175.28
文献标志码:
A
摘要:
讨论了非齐次Tricomi型方程在矩形区域Ω={(t1,t0)×(0,π):t1≤0,t0>0}上的Dirichlet问题的适定性. 当t1=0时,建立了解的估计;当t1<0时,构造反例说明Dirichlet问题在Hadamard’s意义下是不适定的.
Abstract:
Dirichlet problem of inhomogeneous Tricomi type equation in the rectangular domain Ω={(t1,t0)×(0,π):t1≤0,t0>0} is discussed. For t1=0,we give the solution a priori estimate. For t1<0,we show the Dirichlet problem is ill-posedness in Hadamard’s sense by constructing a counterexample.

参考文献/References:

[1] KHACEV M M. The Dirichlet problem for the Tricomi equation in a rectangle[J]. Direr Uravn,1975,11:151-160,205.

[2] JANG J,MASMOUDI N. Well-posedness of compressible Euler equations in a physical vacuum[J]. Comm Pure Appl Math,2015,68(1):61-111.
[3] ELEEV V A,ZHEMUKHOVA Z K. On some boundary value problems for a mixed equation with discontinuous coefficients in a rectangular domain[J]. Vladikavkaz Mat Zh,2002,4(4):8-18.
[4] ZHANG K Q. A note on initial value problem for the generalized Tricomi equation in a mixed-type domain[J]. Acta Math Sinica,2013,29(8):1 581-1 596.
[5] KHACHEV M M. The Dirichlet problem for a degenerate hyperbolic equation in a rectangle[J]. Direr Uravn,2001,37(4):570-572,576.
[6] SABITOV K B. The Tricomi problem for a mixed parabolic-hyperbolic equation in a rectangular domain[J]. Mat Zametki,2009,86(2):273-279.
[7] SABITOV K B,SULEMANOVA A K. The Dirichlet problem for an equation of mixed type with characteristic degeneration in a rectangular domain[J]. Izv Vyssh Uchebn Zaved Mat,2009,11:43-52.
[8] PAYNE L E,SATHER D. On some improperly posed problems for the Chaplygin equation[J]. J Math Anal Appl,1967,19:67-77.
[9] MORAWETZ C S. The Dirichlet problem for the Tricomi equation[J]. Comm Pure Appl Math,1970,23(4):587-601.
[10] LUPO D,MORAWETZ C S,PAYNE K R. On closed boundary value problems for equations of mixed elliptic-hyperbolic type[J]. Comm Pure Appl Math,2007,60(9):1 319-1 348.
[11] PAYNE K R. Boundary geometry and location of singularities for solutions to the Dirichlet problem for Tricomi type equations[J]. Houston J Math,1997,23(4):709-731.
[12] ERDELYI A,MAGNUS W,OBERHETTINGER F,et al. Higher transcendental functions[M]. New York,Toronto and London:McGraw-Hill Book Company,1953.[13] WIMP J. On the zeros of a confluent hypergeometric function[J]. Proc Amer Math Soc,1965,16:281-283.
[14] ZHANG K Q. Existence and regularity of solution to the generalized Tricomi equation with a singular initial datum at a point[J]. Acta Math Sinica,2012,28(6):1 135-1 154.

备注/Memo

备注/Memo:
Received data:2015-09-13. 
Foundation item:Supported by NNSF of China(Tianyuan Fund of Mathematics,11326152),NSF of Jiangsu Province of China(BK20130736)and the Research Fund of Nanjing Institute of Technology of China(YKJ201339). 
Corresponding author:Zhang Kangqun,doctor,associate professor,majored in PDEs. E-mail:chkqnju@hotmail.com
doi:10.3969/j.issn.1001-4616.2016.01.005
更新日期/Last Update: 2016-03-30